INSTITUT NATIONAL D'ASSURANCE MALADIE-INVALIDITE SERVICE DES SOINS DE SANTE Comité d' évaluation des pratiques médicales en matière de médicaments

THE RATIONAL USE OF LIPID LOWERING DRUGS

Systematic literature review: full report

Consensus conference May 22nd 2014 Auditorium Lippens (Royal Library) Brussels This literature review was performed by vzw Farmaka asbl and was followed-up by a reading committee.

Researchers

Hera Decat MD, *vzw Farmaka asbl* Catherine De Monie, *Lic, vzw Farmaka asbl* Griet Goesaert MD, *vzw Farmaka asbl* Thérèse Leroy Lic, *vzw Farmaka asbl* Sofie Wouters, *Lic, vzw Farmaka asbl*

Reading committee

Dirk Devroey MD, VUB Gilles Henrard MD, ULg Thibault Richard MD, CHU Charleroi Johan Wens MD, UA

Administrative and IT support

Stijn Dumon, vzw Farmaka asbl

Translation

Miles NV

TABLE OF CONTENTS

TABLE OF CONTENTS				
ABBREVIATIONS	5			
1 METHODOLOGY	7			
1.1 INTRODUCTION AND SCOPE	7			
1.1.1 Questions to the jury				
1.1.2 Research task of the literature group				
1.1.2.1 Populations				
1.1.2.2 Interventions				
1.1.2.3 Comparisons	10			
1.1.2.4 Endpoints	10			
1.1.2.5 Study criteria				
1.1.2.6 Guidelines				
1.2 SEARCH STRATEGY				
1.2.1 Principles of systematic search				
1.2.2 Search strategy details				
1.3 SELECTION PROCEDURE				
1.4 Assessing the quality of available evidence	15			
1.5 Synopsis of study results				
2 CRITICAL REFLECTIONS OF THE READING COMMITTEE AND THE LITERATURE GROUP	21			
2.1 PATIENT POPULATION				
2.1.1 Inclusion criteria				
2.1.2 Primary prevention?				
2.1.3 Elderly				
2.1.4 Run in				
2.2 COMPARISONS				
2.3 ENDPOINTS				
2.3.1 Adverse events				
2.4 INTERPRETING THE RESULTS				
2.4.1 Statistically significant - clinically relevant				
2.4.2 Number needed to treat?				
2.4.3 Observational studies				
3 GUIDELINES	_			
3.1 CRITERIA FOR GUIDELINE SELECTION				
3.2 SELECTED GUIDELINES	25			
3.2.1 Dyslipidemia	25			
3.2.2 Cardiovascular prevention				
3.2.3 Lifestyle Management	27			
3.3 SUMMARY OF GUIDELINES	-			
3.3.1 Dyslipidemia				
3.3.1.1 ESC-EAS 2011				
3.3.1.2 AACE 2012	-			
3.3.1.3 ESC 2013 (chapt. 6.4)				
3.3.1.4 UMHS 2012				
3.3.1.5 CCS 2013	54			

	3.3.1.	6 ACC AHA 2013 (bc)	. 59
	3.3.2	Cardiovascular prevention	. 70
	3.3.2.	1 ESC 2012	. 70
	3.3.2.	2 NICE 2010	81
	3.3.2.	3 ACC AHA 2013 (cvr)	. 83
	3.3.2.	4 Domus Medica 2007	. 86
	3.3.3	Lifestyle Management	. 92
	3.3.3.	1 ACC AHA 2013 Lifestyle management	92
	3.4 Cc	DNCLUSIONS FROM GUIDELINES	. 95
	3.4.1	Assessment of cardiovascular risk and treatment	. 95
	3.4.2	Pharmacological treatment	. 95
	3.4.3	Monitoring of adverse events	. 95
	3.4.4	Elderly	. 95
	3.4.5	Chronic renal insufficiency	. 95
	3.4.6	Type 2 diabetes	
	3.4.7	Treatment targets and monitoring the lipid-lowering effect	
	3.4.8	Guidance of the patient	
	5.4.0		. 90
4	EVIDEN	CE TABLES AND CONCLUSIONS : EFFICACY OF STATINS	. 97
	4.1 ST	ATIN VERSUS PLACEBO	۵۵
		CTT 2012 Individual patient data meta-analysis	
	4.1.1		
	4.1.1.		
		Statin versus placebo in primary prevention	
	4.1.2		
	4.1.2.		
	4.1.2.		
		Statin versus placebo in patients with a history of stroke or TIA	
	4.1.3		
	4.1.3.		
	4.1.4	Statin versus placebo in patients with a history of coronary heart disease	
	4.1.4.		
	4.1.4.		
		165	-
	4.1.5	Statin versus placebo in elderly patients without established cardiovascular disease	167
	4.1.5.		
	4.1.5.		
	disea		
	4.1.6	Statin versus placebo in elderly patients with a history of coronary heart disease	175
	4.1.6.		
	4.1.6.	2 Summary and conclusions. Statin versus placebo in elderly patients with a history of coronary heart	;
	disea	se 184	
	4.1.7	All-cause mortality in observational studies	187
	4.1.7.	1 Evidence tables	187
	4.1.7.	2 Summary and conclusions. All-cause mortality in observational studies	190
	4.1.8	Mortality rates in open-label follow-up of RCTs	192
4	4.2 Hi	GHER DOSE STATIN VERSUS LOWER DOSE STATIN	195
	4.2.1	Evidence tables. Mills 2011 meta-analysis. Intensive statin dose versus clinically common dose	195
	4.2.2	Summary and conclusions. Mills 2011 meta-analysis. Intensive statin dose versus clinically	
		n dose	206
	4.2.3	Evidence tables. CTT 2012 Individual patient data meta-analysis	
	4.2.4	Summary and conclusions: CTT 2012. Individual patient data meta-analysis	

	4.3	STATIN VERSUS FIBRATE	217
	4.4	STATIN VERSUS EZETIMIBE	217
5	EVID	ENCE TABLES AND CONCLUSIONS: EFFICACY OF OTHER LIPID-LOWERING DRUGS	219
	5.1	FIBRATE VERSUS PLACEBO	221
	-		
	5.1.1		
	5.1.2		
	5.2	EZETIMIBE VERSUS PLACEBO	
	5.3	STATIN PLUS FIBRATE VERSUS STATIN	
	5.3.1	Evidence tables. Simvastatin plus fenofibrate versus simvastatin in patients with type 2 diabo 235	etes
	5.3.2	Summary and conclusions: Simvastatin plus fenofibrate versus simvastatin in patients with t	ype 2
	diabe	tes	238
	5.4	STATIN PLUS EZETIMIBE VERSUS STATIN	241
	5.4.1	Evidence tables. Ezetimibe: all-cause mortality in observational studies	241
	5.4.2	Summary and conclusions: Ezetimibe: all-cause mortality in observational studies	241
6	EVID	ENCE TABLES AND CONCLUSIONS: SAFETY OF STATINS	243
	6.1	NACI 2013 NETWORK META-ANALYSIS. INDIVIDUAL STATIN VS PLACEBO/CONTROL AND ACTIVE-COMPARATOR	245
	6.1.1	Evidence tables	245
	6.1.2		
	0.1.1	active-comparator	
	6.2	INTRACEREBRAL HEMORRHAGE OR HEMORRHAGIC STROKE	
	-		
	6.2.1		
	6.2.2		
	6.3	NEW ONSET TYPE-2 DIABETES	
	6.3.1	Evidence tables	
	6.3.2	·····/ ····	
	6.3	S.2.1 Statin versus placebo	
	6.3	B.2.2 High dose statin versus lower dose statin	
	6.3	S.2.3 Conclusion: statin use and the risk of type 2 diabetes	
	6.4	MUSCULOSKELETTAL PROBLEMS	277
	6.4.1	Evidence tables	277
	6.4.2	Summary and conclusions: musculoskeletal problems	282
	6.5	COGNITION	284
	6.5.1	Evidence tables	284
	6.5.2	Summary and conclusions: cognition	287
	6.6	CATARACT	
	6.6.1		
	6.6.2		
	6.7	CANCER	
	6.7.1		
	-	2.1.1 Evicence tables: Bladder cancer	
	-	7.1.2 Evicence tables: Bradder cancer	
	-	7.1.3 Evicence tables: Colorectal cancer	
		7.1.4 Evicence tables: Gastric cancer	
	-	 2.1.5 Evicence tables: Liver cancer 	
		 2.1.6 Evicence tables: Liver cancer 2.1.6 Evicence tables: Lung cancer 	
		 2.1.7 Evicence tables: Esophageal cancer 	
		1.1.8 Evicence tables: Pancreatic cancer	
	-	 2.1.9 Evicence tables: Prostate cancer 2.1.9 Evicence tables: Prostate cancer 	

6.	7.1.10 Evicence tables: Renal cancer					
6.	7.1.11 Evicence tables: Skin cancer					
6.	7.1.12 Evicence tables: Hematological cancer					
6.7.2	2 Summary and conclusions: site-specific cancers					
6.	7.2.1 Bladder cancer					
6.	7.2.2 Breast cancer					
6.	7.2.3 Colon cancer					
6.	7.2.4 Gastric cancer					
6.	7.2.5 Liver cancer					
6.	7.2.6 Lung cancer					
6.	7.2.7 Esophageal cancer					
-	7.2.8 Pancreatic cancer					
	7.2.9 Prostate cancer					
	7.2.10 Renal cancer					
	7.2.11 Skin cancer					
-	7.2.12 Hematological cancer					
6.7.3	B Total cancer					
7 EVID	ENCE TABLES AND CONCLUSIONS: SAFETY OF OTHER LIPID LOWERING DRUGS					
7.1	FIBRATES AND RISK OF MYOPATHY					
7.1.1						
7.1.2	2 Summary and conclusions. Fibrates and risk of myopathy					
7.2	FIBRATES AND CANCER RISK					
7.2.1	Evidence tables					
7.2.2	2 Summary and conclusions: Fibrates and cancer risk					
7.3	STATIN + EZETIMIBE VERSUS STATIN, ADVERSE EVENTS					
7.3.2	Evidence tables					
7.3.2						
-						
8 ADV	ERSE EVENTS					
8.1	STATINS					
8.2	FIBRATES					
8.3	EZETIMIBE					
8.4	ANION EXCHANGERS					
8.5	NICOTINIC ACID AND ACIPIMOX					
	Omega 3 fatty acids					
8.6	UMEGA 3 FATTY ACIDS					
APPENDI)	(1. EXCLUDED PUBLICATIONS AFTER READING FULL TEXT					
APPENDI	2. SOME RESULTS FROM INDIVIDUAL RCTS	349				
REFERENC	REFERENCES					

Abbreviations

A to Z=Aggrastat to Zocor. ACS = acute coronary syndrome AE= adverse events AF=atrial fibrillation AFCAPS/TexCAPS= Air Force/Texas Coronary Atherosclerosis Prevention Study ALERT=Assessment of Lescol in Renal Transplantation. ALLHAT-LLT=Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. ALLIANCE=Aggressive Lipid-Lowering Initiation Abates New Cardiac Events. ALT=alanine aminotransferase ARR= absolute risk reduction ASCOT-LLA= Anglo-Scandinavian Cardiac Outcomes Trial Lipid-Lowering Arm ASPEN=Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-Insulin-Dependent Diabetes Mellitus. ATP II = Adult Treatment Panel II ATV= Atorvastatine AURORA=A Study to Evaluate the Use of Rosuvastatin in Subjects on Regular Hemodialysis= an Assessment of Survival and Cardiovascular Events. BE= Barret's oesophagus BMI=body-mass index. CABG=coronary artery bypass grafting. CARDS=Collaborative Atorvastatin Diabetes Study. CARE=Cholesterol And Recurrent Events. CHD= Coronary heart disease CI= confidence interval CO= crossover RCT CORONA=Controlled Rosuvastatin Multinational Trial in Heart Failure. CV=cardiovascular. CVD= cardiovascular disease DB= double blind DBP=diastolic blood pressure. DM= diabetes mellitus ECG=echocardiogram. EZE= Ezetimibe GFR= glomerular filtration rate GISSI-HF=Gruppo Italiano per lo Studio della Sopravvivenza nell'Insuffi cienza cardiaca. GISSI-P=Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico. HbA1c=glycated haemoglobin. HPS=Heart Protection Study. HR= Hazard ratio HTN= Hypertension ICD-9= International Classification of Diseases-Ninth Revision ICR= illustrative comparative risk IDEAL=Incremental Decrease in End Points Through Aggressive Lipid Lowering Study Group. IHD=ischaemic heart disease. IR= Incidence Rate IRR= Incidence Rate Ratio ITT= intention-to-treat analysis

JUPITER=Justification for the Use of Statins in Prevention= an Intervention Trial Evaluating Rosuvastatin.

LDL-C= low-density lipoprotein cholesterol;

LIPID=Long-term Intervention with Pravastatin in Ischaemic Disease.

LIPS=Lescol Intervention Prevention Study.

LVEF=left ventricular ejection fraction.

m=months.

MA= meta-analysis

MACE= Major adverse cardiovascular events

MEGA= Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese

MI= Myocardial infarction

MI=myocardial infarction.

MTM= mixed treatment meta-analyse (or network meta-analysis)

MVE= major vascular event

n= number of patients

NA= not available/not applicable

NCEP= National Cholesterol Education Program

NR= not reported

NS= not statistically significant

NT= no statistical test

OHG=oral hypoglycaemics.

OL= open label

PCI= percutaneous coronary intervention

PE= primary endpoint

PG= parallel group RCT

Post-CABG=Post-Coronary Artery Bypass Graft.

PROSPER= Prospective Study of Pravastatin in the Elderly at Risk

PROVE-IT=Pravastatin or Atorvastatin Evaluation and Infection Therapy.

PTCA= percutaneous transluminal coronary angioplasty

Py=person-years

RR= relative risk

RRR= relative risk reduction

RT= Randomized trial

SB= single blind

SBP=systolic blood pressure.

SEARCH=Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine. SIR= Standardized incidence ratio

SS= statistically significant

SSSS=Scandinavian Simvastatin Survival Study.

TC= total cholesterol

TIA=transient ischaemic attack.

TNT=Treating to New Targets.

trig=triglyceride

ULN= upper limit of the normal range

w=weeks.

WHtR=waist-to-height ratio

WOSCOPS=West of Scotland Coronary Prevention Study.

y=years

1 Methodology

1.1 Introduction and scope

This systematic literature review was conducted in preparation of the consensus conference on 'Rational use of lipid lowering drugs' which will take place on May 22 2014.

1.1.1 Questions to the jury

The questions to the jury, as they were phrased by the organising committee of the RIZIV/INAMI are **Question – Vraag 1**

Dyslipidémies et risque cardiovasculaire

Dyslipidemieën en cardiovasculair risico

- quelle est l'importance relative des différents paramètres lipidiques (LDL-C, HDL-C, non HDL-C,...) dans le risque vasculaire global ?
 wat is het belang van de verschillende lipideparameters (LDL-C, HDL-C, non-HDL-C,...) in geval van een
- globaal vasculair risico?
 quels sont les outils (tests, scores) les plus performants pour l'évaluation de ce risque global pour le médecin généraliste belge ?
 welke zijn voor de Belgische huisarts de meest performante instrumenten (tests, scores) om dat globaal

Question – Vraag 2

risico te evalueren?

Efficacité des statines et d'autres hypolipidémiants pour la diminution du risque cardiovasculaire

Werkzaamheid van de statines en andere hypolipemiërende middelen voor de vermindering van het cardiovasculair risico

 quelle est l'efficacité des statines en termes de prévention d'évènements cardiovasculaires dans la population générale (càd hors sous-populations particulières au point 4), en fonction du risque cardiovasculaire avant traitement ?

wat is de werkzaamheid van de statines op het vlak van de preventie van cardiovasculaire evenementen bij de bevolking in het algemeen (dus buiten de specifieke subpopulaties vermeld in punt 4), rekening houdende met het cardiovasculair risico vóór de behandeling?

 existe-il des preuves d'une différence entre statines et/ou doses de statines dans la prévention des évènements cardiovasculaires ?

bestaan er bewijzen voor een verschil tussen statines en/of dosissen van statines in de preventie van cardiovasculaire evenementen?

- quelle est l'efficacité d'autres hypolipidémiants (fibrates, ézétimibe, acipimox, résines échangeuses d'ions) en termes de prévention d'évènements cardiovasculaires dans la population générale (càd hors sous-populations particulières au point 4), en fonction du risque cardiovasculaire avant traitement ? wat is de werkzaamheid van andere hypolipemiërende middelen (fibraten, ezetimibe, acipimox, ionenwisselende harsen) op het vlak van de preventie van cardiovasculaire evenementen bij de bevolking in het algemeen (dus buiten de specifieke subpopulaties vermeld in punt 4), rekening houdende met het cardiovasculair risico vóór de behandeling?
- existe-t-il des valeurs cibles validées pour les composantes lipidiques (LDL-c, HDL-c, non HDL-c, autres...) ?
 bestaan er specifieke waarden die voor de bestanddelen van de lipiden (LDL-C, HDL-C, non-HDL-C, andere...) zijn gevalideerd?

quels doivent être le monitoring et une éventuelle adaptation du traitement (dose, changement de médicament) dans le cadre de l'évaluation de l'efficacité du traitement ?
 hoe moeten de monitoring en een eventuele aanpassing van de behandeling (dosis, verandering van geneesmiddel) eruitzien in het kader van de evaluatie van de werkzaamheid van de behandeling?

Question – Vraag 3

Sécurité des statines et d'autres hypolipidémiants en prévention cardiovasculaire

Veiligheid van de statines en andere hypolipemiërende middelen in het kader van de cardiovasculaire preventie

- quels sont les effets indésirables observés avec les statines en prévention vasculaire quelle est leur fréquence et ceux-ci sont-ils variables en fonction d'autres facteurs (type de statine, dose, durée de traitement, sexe, âge, comorbidité, comédication, génétique...).
 welke zijn de neveneffecten die met de statines in het kader van de vasculaire preventie worden
 - vastgesteld, wat is hun frequentie en verschillen ze naar gelang van de factoren (soort statine, dosis, behandelingsduur, geslacht, leeftijd, comorbiditeit, co-medicatie, erfelijkheid,...)?
- quel est le monitoring adéquat d'un traitement par statines dans le cadre d'une surveillance des effets indésirables potentiels ?

welke is de geschikte monitoring van een behandeling met statines in het kader van een toezicht op de mogelijke neveneffecten?

- quels sont les alertes devant conduire à l'arrêt d'une statine et/ou de toute statine ?
- welke zijn de alarmsignalen die moeten leiden tot de stopzetting van een statine en/of van alle statines?
 comment les prendre en charge ?
- hoe moeten die ten laste worden genomen?
- quels sont les effets indésirables observés avec les autres hypolipidémiants en prévention vasculaire et ceux-ci sont-ils variables en fonction d'autres facteurs (type d'hypolipidémiant, dose, durée de traitement, sexe, âge, comorbidité, comédication,...)

welke zijn de neveneffecten die met de andere hypolipemiërende middelen in het kader van de vasculaire preventie worden vastgesteld, en verschillen ze naar gelang van de factoren (soort statine, dosis, behandelingsduur, geslacht, leeftijd, comorbiditeit, co-medicatie,...)?

Question – Vraag 4

Efficacité et sécurité pour certains sous-groupes de patients

Werkzaamheid en veiligheid voor bepaalde subgroepen van patiënten

l'efficacité et la sécurité des statines en termes de prévention d'évènement cardiovasculaire présentent-telles des particularités chez des patients

vertonen de werkzaamheid en de veiligheid van de statines op het vlak van de preventie van cardiovasculaire evenementen bijzondere kenmerken bij patiënten

- âgés de plus de 60-65 ans (mais moins de 80 ans) ouder dan 60-65 jaar (maar jonger dan 80 jaar)?
- âgés de plus de 80 ans ? ouder dan 80 jaar?
- présentant un diabète ? met diabetes?
- présentant une insuffisance rénale ? met nierinsufficiëntie?
- présentant une insuffisance hépatique ? met leverinsufficiëntie?

Question – Vraag 5

Usage rationnel des statines (et autres hypolipidémiants) Rationeel gebruik van de statines (en andere hypolipemiërende middelen)

- quelles sont les indications validées de l'initiation d'un traitement par statine, et laquelle ?
 Welke zijn de gevalideerde indicaties voor het starten van een behandeling met statines? Welke statine dient hierbij opgestart te worden?
- un arrêt (temporaire ou définitif) d'un traitement par hypolipidémiant est-il rationnel dans certaines circonstances ?

Is een (tijdelijke of definitieve) stopzetting van een hypolipemiërende behandeling onder bepaalde omstandigheden rationeel?

1.1.2 Research task of the literature group

The organising committee has specified the research task for the literature review as follows:

- To discuss selected guidelines regarding juryquestions numbers 2 to 5.
- To search for systematic reviews, meta-analyses, RCTs (and large observational studies for rare safety endpoints) for the following populations, comparisons and endpoints:

1.1.2.1 Populations

The following populations are to be evaluated.

- 'General population'. No formal definition was given by the organising committee. The idea is to include all trials on hypolipemic drugs, except in specific subgroups (see below for excluded populations).
- Specific populations
 - Specific attention to the elderly (population > 65 y and > 80y)
 - Excluded from literature search: diabetics, patients with decreased renal function, people with familial hypercholesterolaemia, patients with cardiac failure

1.1.2.2 Interventions

Only products with a registered indication in Belgium will be considered. These are listed here:

0	Statins	Atorvastatin
		Fluvastatin
		Pravastatin
		Rosuvastatin
		Simvastatin
0	Fibrates	Bezafibrate
		Ciprofibrate
		Fenofibrate
0	Cholesterol absorption inhibitors	Ezetimibe

The following product are excluded from the literature search:

0	Nicotinic acid and acipimox	
0	Bile acid sequestrants	Colestipol
		Cholestyramine
0	Omega-3 fatty acids	
0	Food supplements	Red yeast rice, phytosterols

1.1.2.3 Comparisons

The following comparisons are to be reported

	PLacebo	Statin	Fibrate	Ezetimibe	Statin + fibrate	Statin + ezetimibe
Statin						
Fibrate						
Ezetimibe						
Statin +						
fibrate						
Statin +						
ezetimibe						

1.1.2.4 Endpoints

The following endpoints are to be reported from RCTs:

- All cause mortality
- Cardiovascular mortality
- Cardiovascular disease
- Coronary heart disease
- Stroke
- Peripheral aterial disease
- Haemorrhagic stroke (as adverse event)

The following endpoint are to be reported from RCTs but also from observational cohort studies:

- Type 2 diabetes
- Cognitive function
- Cancer
- Cataract
- Musculoskelettal problems (myalgia and muscle damage)
- All-cause mortality

1.1.2.5 Study criteria

- Efficacy
 - o Design
 - RCT
 - Double blind
 - Duration of RCT: minimum 1 year.
 - Minimum number of participants: minimum 40 per study arm. For studies with multiple treatment arms, we looked at the number of participants in comparisons relevant to our search.
 - Phase III trials (no phase II trials)
- Safety
 - o Information from the selected RCTs
 - Belgisch Centrum voor Farmacotherapeutische Informatie (BCFI), Federaal Agentschap voor Geneesmiddelen en Gezondheidsproducten (FAGG), European Medicines Agency (EMA), Meyler's Side Effects of Drugs (15th edition), Martindale: The complete drug reference (36th edition), Farmacotherapeutisch Kompas.
 - Additional information from large observational cohort studies.

1.1.2.6 Guidelines

Only guidelines that report levels of evidence/recommendation are to be selected.

Only guidelines from 2009 onwards are to be selected.

Guidelines were selected and agreed upon through discussion with the organising committee, based on relevance for the Belgian situation.

Similarities and discrepancies between guidelines are to be reported.

The literature group will also report whether the guideline was developed together with other stakeholders (other healthcare professionals: pharmacists, nurses,... or patient representatives) and whether these guidelines are also targeting these groups.

1.2 Search strategy

1.2.1 Principles of systematic search

Relevant literature was searched in a stepwise approach.

- Firstly, sources that report and discuss data from systematic reviews, meta-analyses and original trials, like Clinical Evidence were consulted. Guidelines were consulted to look up additional relevant references.
- In a second step we have searched for large systematic reviews from reliable EBM-producers (NICE, AHRQ, the Cochrane library) that answer our research questions. One or more systematic reviews were selected as our basic source. From these sources, references of relevant publications were screened manually.
- In a third step, we conducted a systematic search for randomised controlled trials (RCTs), metaanalyses and smaller systematic reviews that were published after the search date of our selected systematic reviews.

The following electronic databases have been searched

- Medline (PubMed)
- Cochrane Library

A number of other sources were consulted additionally: relevant publications, indices of magazines available in the library of vzw Farmaka asbl: mainly independent magazines that are a member of the International Society of Drug Bulletins (ISDB) such as Geneesmiddelenbulletin (The Netherlands), Folia Pharmacotherapeutica (Belgium), La Revue Prescrire (France), Drug & Therapeutics Bulletin (UK), Therapeutics Letter (Canada), Geneesmiddelenbrief (Belgium), Arzneimittelbrief (Germany),...

Guidelines were searched through the link "evidence-based guidelines" on the website of vzw Farmaka asbl (<u>www.farmaka.be</u>) and on the website of CEBAM (<u>www.cebam.be</u>). These contain links to the national and most frequently consulted international guidelines, as well as links to 'guideline search engines', like National Guideline Clearinghouse and G-I-N.

1.2.2 Search strategy details

As a source document, the following systematic reviews or meta-analyses were selected

1. Sharma M, Ansari MT, Soares-Weiser K, Abou-setta AM, Ooi TC, Sears M, et al. Comparative Effectiveness of Lipid-Modifying Agents. 2009.

2. Fodor G. Primary prevention of CVD: treating dyslipidaemia. Clinical evidence. 2010.

3. Lip GY, Kalra L. Stroke: secondary prevention. Clinical evidence. 2010.

Skinner JS, Cooper A. Secondary prevention of ischaemic cardiac events. Clinical evidence.
 2011.

A search strategy was developed in Pubmed to find relevant RCTs that appeared after the search date of above publications (<u>http://www.ncbi.nlm.nih.gov/pubmed/</u>).

In some cases, when the selected systematic reviews were not sufficient (e.g. no search for all drugs), an additional search was conducted for RCTs that appeared before the search date of the selected systematic review.

The search for observational studies in pubmed was limited to the last 3 years, due to large amount of publications on statins, but reference lists of the selected publications were also screened for relevant earlier publications.

The following search strategy was used:

(((("Hydroxymethylglutaryl-CoA Reductase Inhibitors"[Mesh] OR statin*[tiab] OR "reductase inhibitor*"[tiab] OR Simvastatin[Mesh] OR Simvastatin[tiab] OR Atorvastatin[tiab] OR Rosuvastatin[tiab] OR Pravastatin[Mesh] OR Pravastatin[tiab] OR Fluvastatin[tiab] OR ezetimibe[Supplementary Concept] OR ezetimibe[tiab]) AND ("2009/12"[PDat] : "2013/12/31"[PDat])) OR ((fibrate*[tiab] OR fibric acids[Mesh] OR fibric acid*[tiab] OR Clofibric acid[Mesh] OR Clofibric acid[tiab] OR clofibrate[tiab] OR fenofibrate[MH] OR fenofibrate[tiab] OR bezafibrate[Mesh] OR bezafibrate[tiab]) AND ("2010/05"[PDat] : "2013/12/31"[PDat])) OR ((ezetimibe[Supplementary Concept] OR ezetimibe[tiab] OR fibrates[tiab] OR fibric acids[Mesh] OR fibric acid*[tiab] OR Clofibric acid[Mesh] OR Clofibric acid[tiab] OR clofibrate[tiab] OR fenofibrate[MH] OR fenofibrate[tiab] OR bezafibrate[Mesh] OR bezafibrate[tiab]) AND ("Hydroxymethylglutaryl-CoA Reductase Inhibitors"[Mesh] OR statin*[tiab] OR "reductase inhibitor*"[tiab] OR Simvastatin[Mesh] OR Simvastatin[tiab] OR Atorvastatin[tiab] OR Rosuvastatin[tiab] OR Pravastatin[Mesh] OR Pravastatin[tiab] OR Fluvastatin[tiab]) AND ("2008/8"[PDat] : "2013/12/31"[PDat]))) AND ((("Cardiovascular Diseases/blood"[Mesh] OR "Cardiovascular Diseases/mortality"[Mesh] OR "Cardiovascular Diseases/prevention and control"[Mesh] OR "Mortality"[Mesh] OR "Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects"[Mesh] OR "Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use" [Mesh] OR "Primary Prevention" [Mesh] OR "Secondary Prevention"[Mesh] OR "Stroke/prevention and control"[Mesh]) AND (mortality[tiab] OR death[tiab] OR cardiovascular[tiab] OR MI[tiab] OR myocardial infarct*[tiab] OR coronary[tiab] OR "vascular event"[tiab] OR stroke[tiab])) OR ((mortality[tiab] OR death[tiab] OR cardiovascular[tiab] OR MI[tiab] OR myocardial infarct*[tiab] OR coronary[tiab] OR "vascular event"[tiab] OR stroke[tiab]) AND ("2013/05"[PDat] : "2013/12/31"[PDat]))) AND (((systematic[sb] OR medline[TIAB]) NOT (renal[ti] OR "chronic kidney"[ti] OR endothel*[ti] OR valv*[ti])) OR ((randomized controlled trial OR random*[TIAB] OR controlled clinical trial) NOT (renal[ti] OR endothel*[ti] OR valv*[ti] OR niacin[ti] OR resin*[ti] OR cholestyramin*[ti] OR omega-3[ti] OR "chronic kidney"[ti]))) NOT (animals[Mesh] NOT humans[Mesh])) OR

("Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects"[Mesh] OR statin*[tiab] OR "Simvastatin/adverse effects"[Mesh] OR Simvastatin [tiab] OR Atorvastatin [tiab] OR Rosuvastatin [tiab] OR "Pravastatin/adverse effects" [Mesh]OR Pravastatin [tiab] OR Fluvastatin [tiab] OR ezetimibe[Supplementary Concept] OR ezetimibe [tiab] OR fibrate* [tiab] OR "fibric acids/adverse effects" [Mesh] OR fibric acid* [tiab]) AND (Cohort[TIAB] OR Longitudinal[TIAB] OR Prospective[TIAB] OR Retrospective[TIAB] OR "Observational Study" [Publication Type] OR systematic[sb] OR medline[TIAB]) AND ((("Diabetes Mellitus, Type 2" [Mesh] OR (diabetes[TIAB] AND ("type II" [TIAB] OR "type 2" [TIAB]))) AND ("2012" [PDat] : "2013" [PDat])) OR ((cognit* [TIAB] OR Alzheimer* [TIAB] OR dementia [TIAB] OR "Dementia" [Mesh]) AND ("2012" [PDat] : "2013" [PDat])) OR ((cancer [TIAB] OR "Neoplasms" [Mesh]) AND ("2011" [PDat] : "2013" [PDat])) OR ((cataract[TIAB] OR "Cataract" [Mesh]) AND ("2011" [PDat] : "2013" [PDat])) OR ((cataract[TIAB] OR "Musculoskeletal Pain" [Mesh] OR "Myositis" [Mesh] OR "Rhabdomyolysis" [Mesh] OR Myopathy [TIAB] OR Myalgia [TIAB] OR myositis [TIAB] OR Rhabdomyolysis [TIAB] OR Tendinitis [TIAB] OR Muscle weakness [TIAB]) AND ("2011" [PDat] : "2013" [PDat])) OR ((mortality [TIAB] OR "mortality" [MeSH Terms]) AND ("2011" [PDat] : "2013" [PDat])))

Search results:

1911 records after duplicates removed 187 full text articles assessed 112 full text articles excluded 76 articles included

A list of publications that were excluded after reading the full text is available in appendix 1.

1.3 Selection procedure

Inclusion criteria used to select relevant *meta-analyses and systematic reviews*:

- Research question in selected publication matched research question for this literature review
- Systematic search
- Systematic reporting of results
- Inclusion of randomised controlled trials
- Reporting of clinically relevant outcomes

Inclusion criteria for *randomised controlled trials (RCTs)* are mentioned in chapter 1.1. with relevant interventions, endpoints and study criteria.

Selection of relevant references was conducted by two researchers independently. Differences of opinion were resolved through discussion. A first selection of references was done based on title and abstract. When title and abstract were insufficient to reach a decision, the full article was read to decide on inclusion or exclusion.

Some publications were excluded for practical reasons:

- Publications unavailable in Belgian libraries
- Publications in languages other than Dutch, French, German and English

1.4 Assessing the quality of available evidence

To evaluate the quality of the available evidence, the GRADE system was used. In other systems that use 'levels of evidence', a meta-analysis is often regarded as the highest level of evidence. In the GRADE system, however, only the quality of the original studies is assessed. Whether the results of original studies were pooled in a meta-analysis is of no influence to the quality of the evidence. The GRADE-system is outcome-centric. This means that quality of evidence is assessed for each enpoint, across studies.

Study design		+ 4	RCT
		+ 2	Observational
		+ 1	Expert opinion
Study quality		- 1	Serious limitation to study quality
		- 2	Very serious limitation to study quality
Consistency*		- 1	Important inconsistency
Directness**		- 1	Some uncertainty about directness
		- 2	Major uncertainty about directness
Imprecision***		- 1	Imprecise or sparse data
Publication bia	as	- 1	High probability of publication bias
For	Evidence of association	+ 1	Strong evidence of assciation (RR of >2 or <0.5)
observational		+ 2	Very strong evidence of association (RR of >5 or <0.2)
studies	Dose response gradient	+ 1	Evidence of a dose response gradient (+1)
	Confounders	+1	All plausible confounders would have reduced the
			effect
SUM		4	HIGH quality of evidence
* Consistency refers to the similarity of e		3	MODERATE quality of evidence
		2	LOW quality of evidence
		1	VERY LOW quality of evidence
		-	

The GRADE system^{3,4,5} assesses the following items:

* **Consistency** refers to the similarity of estimates of effect across studies. if there is important unexplained inconsistency in the results, our confidence in the estimate of effect for that outcome decreases. Differences in the direction of effect, the size of the differences in effect, and the significance of the differences guide the (inevitably somewhat arbitrary) decision about whether important inconsistency exists.

**** Directness:** there are two types of indirectness of evidence. The first occurs when considering, for example, use of one of two active drugs. Although randomised comparisons of the drugs may be unavailable, randomised trials may have compared one drug with placebo and the other with placebo. Such trials allow indirect comparisons of the magnitude of effect of both drugs. Such evidence is of lower quality than would be provided by head to head comparisons of the drugs. The second type of indirectness of evidence includes differences between the population, intervention, comparator to the intervention, and outcome of interest, and those included in the relevant studies.

*****Imprecision**: When studies include relatively few patients and few events and thus have wide confidence intervals, a guideline panel will judge the quality of the evidence to be lower.

In this literature review the criterium 'pubication bias' and the criteria specifically intended for observational studies (see table above) have not been assessed. This adapted version of GRADE therefore evaluates the following criteria:

Study design	+ 4	RCT
Study quality -		Serious limitation to study quality
	- 2	Very serious limitation to study quality
Consistency	- 1	Important inconsistency
Directness	- 1	Some uncertainty about directness
	- 2	Major uncertainty about directness
Imprecision	- 1	Imprecise or sparse data
SUM	4	HIGH quality of evidence
	3	MODERATE quality of evidence
	2	LOW quality of evidence
	1	VERY LOW quality of evidence

In assessing the different criteria, we have applied the following rules.

Study design

In this literature review, all studies are RCTs (inclusion criterium). "Study design" is therefore not reported specifically in this report.

Study quality

To assess the methodological quality of RCTs, we considered the following criteria. **Randomization**: If the method of generating the randomization sequence was described, was it adequate (table of random numbers, computer-generated, coin tossing, etc.) or inadequate (alternating, date of birth, hospital number, etc.)?

Allocation concealment: : If the method of allocation was described, was it adequately concealed (central allocation, ...) or inadequate (open schedule, unsealed envelopes, etc.)?

Blinding: Who was blinded? Participants/personnel/assessors

If the method of blinding was described, was it adequate (identical placebo, active placebo, etc.) or inadequate (comparison of tablet vs injection wit hno double dummy)?.

Missing outcome data:

Follow-up, description of exclusions and drop-outs, ITT

Selective outcome reporting

If a meta-analysis or a systematic review is used, quality of included studies was assessed. It is not the quality of the meta-analysis or systematic review that is considered in GRADE assessment, but only the quality of RCTs that were included in the meta-analysis/systematic review.

Application in GRADE:

Points were deducted if one of the above criteria was considered to generate a high risk of bias for a specific endpoint.

For example:

- Not blinding participants will not decrease validity of the results when considering the endpoint 'mortality', but will decrease validity when considering a subjective endpoint such as pain, so for the endpoint pain, one point will be deducted.
- A low follow-up when no ITT analysis is done, will increase risk of bias, so one point will be deducted in this case.

Consistency

Good "consistency" means that several studies have a comparable or consistent result. If only one study is available, consistency cannot be judged. This will be mentioned in the synthesis report as "NA" (not applicable).

Consistency is judged by the literature group and the reading committee based on the total of available studies, whilst taking into account

- Statistical significance
- Direction of the effect if no statistical significance is reached. E.g. if a statistically significant effect was reached in 3 studies and not reached in 2 others, but with a non significant result in the same direction as the other studies, these results are considered consistent.
- Clinical relevance: if 3 studies find a non-significant result, whilst a 4th study does find a statistically significant result, that has no clinical relevance, these results are considered consistent.
- For meta-analyses: statistical heterogeneity

Directness

Directness addresses the extent in which we can generalise the data from a study to the real population (external validity). If the study population, the studied intervention and the control group or studied endpoint are not relevant, points can be deducted here. When indirect comparisons are made, a point is also deducted.

Imprecision

If we include systematic reviews or meta-analyses that include studies with <40 patients per studyarm (for a cross-over study: <40 patients in the complete study), a point is deducted for imprecision. For meta-analyses and in comparisons with only one study: a point is deducted when power is inadequate (depends also on the sample size).

Application of GRADE when there are many studies for 1 endpoint:

Points are only deducted if the methodological problems have an important impact on the result. If 1 smaller study of poor quality confirms the results of 2 large good quality studies, no points are deducted.

More information on the GRADE Working Group website: <u>http://www.gradeworkinggroup.org</u>

1.5 Synopsis of study results

The complete report contains per research question

- Evidence tables (English) of systematic reviews or RCTs on which the answers to the study questions are based
- A short synopsis, consisting of a summary table and a text, with a quality assessment using an adjusted version of the GRADE system (English)

The synopsis report contains per research question

- A short synopsis, consisting of a summary table and a text, with a quality assessment using an adjusted version of the GRADE system.

The conclusions have been discussed and adjusted through discussions between the authors of the literature search and the reading committee of the literature group.

References

1. Clinical Evidence. A compendium of the best available evidence for effective health care. Website: http://clinicalevidence.bmj.com

2. Minerva is a journal for evidence-based medicine published in Belgium. Website: www.minerva-ebm.be

3. GRADE working group. http://www.gradeworkinggroup.org

4. GRADE working group. Grading quality of evidence and strength of recommendations. BMJ 2004;328:1490.

5. Guyatt G, Oxman A, Kunz R et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924-6

2 Critical reflections of the reading committee and the literature group

2.1 Patient population

2.1.1 Inclusion criteria

The inclusion criteria in the RCTs are very diverse. While some trials do include participants based on a certain level of lipids, a wide range of other inclusion criteria is used (e.g. a previous cardiovascular event, hypertension, microalbuminuria, elevated hs-CRP,...).

Some RCTs include only patients with no previous history of cardiovascular disease, some include only patients with a history of cardiovascular disease, and some include both. Likewise, some trials include only diabetics, some exclude them, whilst other trials include both diabetics and nondiabetics. We have, between trials an within trials, a population that consists of patients with a very different baseline risk of cardiovascular disease.

This proves a challenge in interpreting the results for clinical practice, especially since most of our information is derived from meta-analyses. Most of these meta-analyses have pooled trials that are clinically very heterogeneous. This poses a problem when we want to estimate the efficacy of a statin in an individual patient. (See also below: clinical relevance, number needed to treat) In clinical practice, risk prediction models (e.g. SCORE in Europe) are used to predict the risk of cardiovascular disease in an individual patient and as a decision aid whether or not to start treatment. Almost no trials include patients based on such a risk prediction model.

2.1.2 Primary prevention?

A number of meta-analyses have been published on the use of statins in primary prevention. This raises some questions for the clinician. How is primary prevention defined? In the selected meta-analyses, this is usually on clinical grounds (No history of clinical CVD). But what about patients with atherosclerosis (e.g. asymptomatic cartotid stenosis) on imaging techniques? The meta-analysis by Taylor 2013 included some trials with patients who had evidence of subclinical carotid atherosclerosis. It also allowed trials with a low number of patients with clinical CVD. The only meta-analysis that excluded all patients with clinical CVD is Ray 2010. Interestingly, this meta-analysis did not find a statistically significant effect of statins on all-cause mortality.

2.1.3 Elderly

One of the questions that the jury needs to address, is the use of lipid-lowering drugs in the elderly. Unfortunately, data are somewhat limited. Statins have been studied in a relatively young population (mean age below 60y in most trials). We included 2 meta-analyses in the elderly that include mostly subgroup analyses of larger trials (mean age in these meta-analyses: +/- 73 y in primary prevention and +/- 70y in secondary prevention).

We have not enough data in the very old (>80y).

2.1.4 Run in

A lot of trials use a run-in period: patients that are candidates for inclusion in the trial are given placebo treatment (or a statin in other trials) for a certain time, to eliminate participants with poor compliance.

In placebo-controlled statin trials, there is often a placebo run-in period used.

In trials of high dose statin versus a lower dose, a statin run-in period is sometimes used. In this case (as in patients that have received statins before entering the trial), adverse events cannot reliably be estimated, since patients that have experienced adverse events are not likely to be included in the trial.

2.2 Comparisons

Trials that compare a higher dose of statin to a lower dose (moderate dose) of statin have only been conducted in participants with a history of cardiovascular disease.

In patients with no history of cardiovascular disease, it is therefore not clear whether a higher dose statin leads to any relevant benefit in cardiovascular disease risk and mortality.

There are many trials on statin treatment. Our evidence base for other lipid-lowering drugs such as fibrates and ezetimibe is much more limited. More studies are needed to determine the role of these drugs.

2.3 Endpoints

2.3.1 Adverse events

Reporting of adverse events in the trials is not very good. Meta-analyses do not always analyse adverse events. The use of run-in periods also leads to considerable bias.

2.4 Interpreting the results

2.4.1 Statistically significant - clinically relevant

The main focus of an RCT is usually to establish whether a treatment is statistically significantly better than a comparator (placebo or other treatment).

However, some differences may be statistically significant due to a large sample size, but the clinical relevance may be limited (Willenheimer 2001(1), Chevalier 2009(2)).

If the absolute risk reduction is very small and the number needed to treat very high, a clinically meaningful result for an individual patient will be doubtful.

It is difficult to say what such a cut-off margin of clinical relevance may be. It will depend on the gravity of the event that is prevented, and has to be balanced with the risk/adverse events of the treatment. A risk- benefit assessment will involve an evaluation of the magnitude of the treatment effect, of adverse events, cost of the treatment (and choices of society), and also involves the notion of medicalization of a relatively healthy population. Many of these factors are not well studied or hard to quantify.

Other factors that contribute to the estimation of clinical relevance of a treatment is the general applicability of study results (Willenheimer 2001(1), Chevalier 2009(2)).

- Does the study population represent the individual patient that we want to treat?
- Can a study duration of several years adequately reflect the lifelong use of a drug?
- Is the compliance in the general population comparable to compliance within the study?

2.4.2 Number needed to treat?

The number needed to treat expresses the number of patients who need to be treated to prevent one additional event. Traditionally, it is a way to present the results from a single trial, since it is influenced by the baseline risk of the included patients and by the duration of the intervention. NNTs for meta-analyses are sometimes reported. These NNTs are to be interpreted with caution because they are not very reliable.

Marx 2003(3) phrases the problem as follows: "NNTs derived from meta-analyses are affected by variations in risk differences among the studies, as well as baseline event rates in control groups of randomised controlled trials. Summary estimates of NNTs assume constant risk differences between trials, a problematic assumption because of inevitable variation in baseline event rates between trials, differences in outcomes considered, effects of secular trends on disease risk, and differences in clinical setting as well as duration of follow up (ie, time horizon). In primary prevention of chronic disease, such as cardiovascular disease, the effect of time trends will become noticeable." Since we know that the meta-analyses on statins pool studies with very different baseline risk, it may be more prudent to look at NNTs of the individual trials.

2.4.3 Observational studies

For adverse events, we have included the results of observational studies.

An observational study cannot prove a causal link, it can merely establish an association between the use of a drug and a specific outcome. The quality of evidence in the GRADE approach for observational studies is LOW by default, although upgrading or downgrading according to certain rules is possible.

3 Guidelines

3.1 Criteria for guideline selection

In order to be included, the guideline had to be of recent date (not published before 2010) and had to report levels of evidence and/or grades of recommendation. The following guidelines fulfilled these criteria:

3.2 Selected guidelines

3.2.1 Dyslipidemia

ESC-EAS 2011	European Society of Cardiology / European Atherosclerosis Society guidelines for
	the management of dyslipidaemias
	Reiner Z, Catapano AL, De Backer G et al. ECS/EAS guidelines for the management
	of dyslipidaemias. Eur Heart J 2011;32:1769-1818.
	doi:10.1093/eurheartj/ehr158
	http://eurheartj.oxfordjournals.org
AACE 2012	American Association of Clinical Endocrinologists' guidelines for management of
	dyslipidemia and atherosclerosis
	Jellinger PS, Smith DA, Mehta AE et al. Lipid and atherosclerosis guidelines.
	Endocrine Practice 2012; 18 (1): 1-78.
ESC 2013	Chapter 6.4. Prevention of cardiovascular disease in patients with diabetes and
	dyslipidaemia
	ESC guidelines on diabetes, pre-diabetes and cardiovascular diseases developed in
	collaboration with EASD (European Association for the Study of Diabetes)
	Eur Heart J 2013 Advance Access published August 30, 2013
	doi:10.1093/eurheartj/eht108
	http://eurheartj.oxfordjournals.org
UMHS 2012	Screening and management of lipids, guidelines for clinical care by University of
	Michigan Health System
	Original: 2009, minor revisions in 2011 and 2012
	5 /
	Barrie WE, Van Harrison R, Khanderia UB et al. Screening and management of
	lipids. UMHS Lipid Therapy Guideline update, November 2012: 1-16.
CCS 2013	Canadian Cardiovascular Society guidelines for the diagnosis and treatment of
	dyslipidemia for the prevention of cardiovascular disease in the adult
	Anderson TJ, Grégoire J, Hegele RA et al. 2012 Update of the Canadian
	Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia

	for the prevention of cardiovascular disease in the adult. Canadian Journal of
	Cardiology 2013; 29: 151–167.
ACC AHA 2013	Guideline on the treatment of blood cholesterol to reduce atherosclerotic
bc	cardiovascular risk in adults: a report of the American College of
	Cardiology/American Heart Association
	Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the
	treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in
	adults: a report of the American College of Cardiology/American Heart Association
	Task Force on Practice Guidelines. <i>Circulation.</i> 2013;00:000–000.
	http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437738.63853.7a.citation

3.2.2 Cardiovascular prevention

ESC 2012	European guidelines on cardiovascular disease prevention in clinical practice
	Perk J, De Backer G, Gohlke H et al. European guidelines on cardiovascular disease
	prevention in clinical practice (version 2012). Eur Heart J 2012;33:1635-1701.
	doi: 10.1093/eurheartj/ehs092
NICE 2010	Prevention of cardiovascular disease (NICE public health guidance 25) Issued June
	2010
	National Institute for Health and Clinical Excellence. Prevention of cardiovascular
	disease. NICE Clinical Guideline PH25. Issue date: June 2010
	http://guidance.nice.org.uk/PH25
ACC AHA 2013	Guideline on the assessment of cardiovascular risk
cvr	
	Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the
	assessment of cardiovascular risk: a report of the American College of
	Cardiology/American Heart Association Task Force on Practice Guidelines.
	<i>Circulation.</i> 2013;00:000–000.
a	http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437741.48606.98.citation
Domus Medica	Globaal cardiovasculair risicobeheer
2007	
	Boland B, Christiaens T, Goderis G et al. Globaal cardiovasculair risicobeheer.
	Aanbeveling voor goede praktijkvoering Domus Medica. <i>Huisarts Nu</i> 2007;36:339-
	69.
	http://www.domusmedica.be/documentatie/richtlijnen/overzicht/cardiovasculair-
	horizontaalmenu-381.html

3.2.3 Lifestyle Management

ACC AHA	Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the
2013	American College of Cardiology/American Heart Association Task Force on Practice
Lifestyle	Guidelines
Management	
	Eckel RH, Jakicic JM, Ard, JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology American/Heart Association Task Force on Practice Guidelines. <i>Circulation.</i> 2013;00:000–000.
	http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437740.48606.d1.citation

3.3 Summary of guidelines

3.3.1 Dyslipidemia

3.3.1.1 ESC-EAS 2011

Grades of recommendation:

- 1) **Class I:** evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.
 - ⇒ Is recommended/indicated
- 2) **Class II**: conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure.
 - a. weight of evidence/opinion is in favor of usefulness/efficacy.
 - \Rightarrow Should be considered
 - b. usefulness/efficacy is less well established by evidence/opinion.
 - ⇒ May be considered
- 3) **Class III**: evidence and/or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.
 - \Rightarrow Is not recommended

Levels of evidence:

- 1) Level A: Data derived from multiple randomized clinical trials or meta-analyses.
- 2) **Level B**: Data derived from a single randomized clinical trial or large non-randomized studies.
- 3) Level C: Consensus of opinion of the experts and/or small studies, retrospective studies, registries.

Included populations, interventions, outcomes:

- Patients with dyslipidaemias. Specific subpopulations: familial dyslipidaemia, metabolic syndrome and diabetes, acute coronary syndrome and patients undergoing percutaneous coronary intervention, heart failure and valvular diseases, autoimmune diseases, renal disease, transplantation patients, peripheral arterial disease, stroke, HIV patients.
- Lifestyle modifications, statins, bile acid sequestrants, cholesterol absorption inhibitors, nicotinic acid, LDL apheresis, fibrates, n-3 fatty acids, cholesteryl ester transfer protein inhibitors.
- Total cardiovascular risk, level of total cholesterol, level of low-density lipoprotein LDL cholesterol, level of very low-density lipoprotein VLDL cholesterol, level of high-density lipoprotein HDL cholesterol, triglycerides, apolipoproteins.

Members of development group, target population:

- Professionals involved with the medical care of patients with this pathology.
- Patients with dyslipidaemias and therefore are at risk for coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease (PAD).

Recommendations:

Prevention and treatment of dyslipidaemias should always be considered within the broader framework of cardiovascular disease (CVD) prevention.

Recommendations: risk assessment:

Who?

Risk factor screening, including the lipid profile, may be considered (class IIb) in) in <u>adult men \geq 40 years of age</u>, and in women \geq 50 years of age or post-menopausal, particularly in the presence of other risk factors.

In addition, all subjects with evidence of atherosclerosis in any vascular bed or with type 2 diabetes, irrespective of age, are regarded as being at high risk; it is recommended to assess their lipid profile. **(class I)**

Patients with <u>chronic kidney disease (CKD</u>) (GFR ,60 mL/min/1.73 m2) are also at increased risk for CVD events and should be screened for dyslipidaemias.

What?

Total cholesterol (TC) is recommended to be used for the estimation of total CV risk by means of the SCORE system.

(class I)

LDL-C is recommended to be used as the primary lipid analysis for screening and risk estimation. **(class I)**

Triglycerides (TG) adds information on risk and is indicated for risk estimation. **(class I)**

HDL-C is a strong risk factor and is recommended to be used for risk estimation. **(class I)**

Non-HDL-C should be considered as an alternative risk marker, especially in combined hyperlipidaemias, diabetes, the metabolic syndrome or chronic kidney disease. **(class IIa)**

Lipoprotein a, Lp(a), should be recommended is selected cases at high risk and in subjects with a family history of premature CVD. (class IIa)

Apolipoprotein B, Apo B, should be considered as an alternative risk marker, especially in combined hyperlipidaemias, diabetes, the metabolic syndrome or chronic kidney disease. (class IIa)

The ratio Apo B/Apo AI combines the risk information of Apo B and Apo AI and may be recommended as an alternative analysis for risk screening. **(class IIb)**

The ratio non-HDL-C/HDL-C may be recommended as an alternative analysis for risk screening. **(class IIb)**

How?

Very simple principles of risk assessment can be defined as follows:

(1) Those with

† known CVD

+ type 2 diabetes or type 1 diabetes with microalbuminuria

+ very high levels of individual risk factors

+ chronic kidney disease (CKD)

are automatically at VERY HIGH or HIGH TOTAL CARDIOVASCULAR RISK and need active management of all risk factors.

(2) For all other people, the use of a risk estimation system such as <u>SCORE</u> is recommended to estimate total CV risk because many people have several risk factors which, in combination, may result in unexpectedly high levels of total CV risk.

SCORE differs from earlier risk estimation systems in several important ways, and has been modified somewhat for the present guidelines.

The SCORE system estimates the 10 year risk of a first fatal atherosclerotic event, whether heart attack, stroke, or other occlusive arterial disease, including sudden cardiac death. Risk estimates have been produced as charts for high and low risk regions in Europe (see Figures 1 and 2)(Belgium should consider the low risk chart). All International Classification of Diseases (ICD) codes that could reasonably be assumed to be atherosclerotic are included. Most other systems estimate CAD risk only.

Relative risks may be unexpectedly high in young persons, even if absolute risk levels are low. Charts including HDL-C are available as Addendum I to these guidelines on the ESC website (www. escardio.org/guidelines)

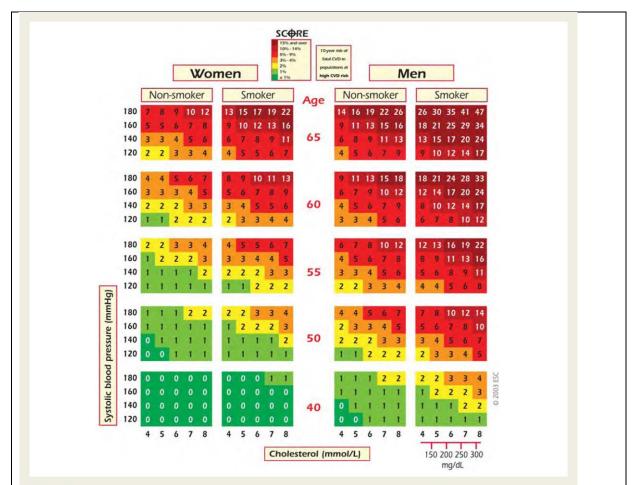
Very high risk:

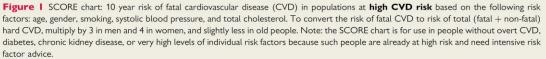
Subjects with any of the following:

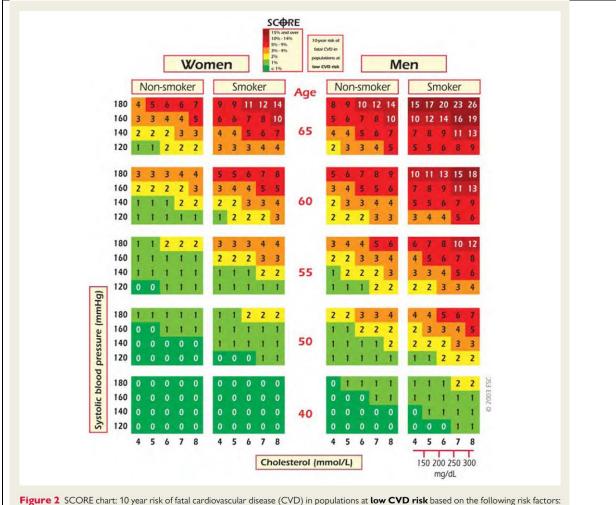
- Documented CVD by invasive or non-invasive testing (such as coronary angiography, nuclear imaging, stress echocardiography, carotid plaque on ultrasound), previous myocardial infarction (MI), ACS, coronary revascularization (PCI, CABG), and other arterial revascularization procedures, ischaemic stroke, PAD.
- Patient with type 2 diabetes, patients with type 1 diabetes with target organ damage (such as microalbuminuria)
- Patients with moderate severe CKD (GFR<60ml/min/1.73m²)
- A calculated 10 year risk SCORE 10 %

High risk:

Subjects with any of the following:


- Markedly elevated single risk factors such as familial dyslipidaemias and severe hypertension
- A calculated SCORE 5 % and < 10 % for 10 year risk of fatal CVD


Moderate risk:


Subjects are considered to be at moderate risk when their SCORE is >1 % and < 5 % at 10 years. Many middle-aged subjects belong to this risk category. This risk is further modulated by a family history of premature CAD, abdominal obesity, physical activity pattern, HDL-C, TG, hs-CRP, Lp(a), fibrinogen, homocysteine, apo B ad social class.

Low risk:

The low risk category applies to individuals with SCORE < 1 %.

Figure 2 SCORE chart: 10 year risk of fatal cardiovascular disease (CVD) in populations at **low CVD risk** based on the following risk factors: age, gender, smoking, systolic blood pressure, and total cholesterol. To convert the risk of fatal CVD to risk of total (fatal + non-fatal) hard CVD, multiply by 3 in men and 4 in women, and slightly less in old people. Note: the SCORE chart is for use in people without overt CVD, diabetes, chronic kidney disease, or very high levels of individual risk factors because such people are already at high risk and need intensive risk factor advice.

Recommendations: targets:

LDL-C is recommended as target for treatment.

(class I)

Total cholesterol should be considered as treatment target if other analyses are not available. **(class IIa)**

Triglycerides should be analysed during the treatment of dyslipidaemias with high triglyceride level. **(class IIa)**

Non-HDL-C should be considered as a secondary target in combined hyperlipidaemias, diabetes, the metabolic syndrome or chronic kidney disease (CKD).

(class IIa)

Apo B should be considered as a secondary treatment target.

(class IIa)

HDL-C is not recommended as a target treatment.

(class III)

The ratios Apo B/Apo AI and non-HDL-C/HDL-C are not recommended as targets for treatment. **(class III)**

In patients at <u>very high cardiovascular risk</u> (established CVD, type 2 diabetes mellitus, type 1 diabetes with target organ damage, moderate to severe CKD or a SCORE level \geq 10%), the LDL-C goal is < 1.8 mmol/l (less than 70 mg/dl) and/or \geq 50% LDL-C reduction when target level cannot be reached.

(class I)

In patients at <u>high cardiovascular risk</u> (markedly elevated single risk factors, a SCORE level \geq 5 to < 10%) an LDL-C goal < 2.5 mmol/l (less than 100 mg/dl) should be considered. (class IIa)

In subjects at <u>moderate risk</u> (SCORE level > 1 to \leq 5%) an LDL-C goal < 3.0 mmol/l (less than 115 mg/dl) should be considered. (class IIa)

To date, no specific targets for HDL-C or TG levels have been determined in clinical trials.

Recommendations: treatment:

Those with

- † known CVD
- + type 2 diabetes or type 1 diabetes with microalbuminuria
- + very high levels of individual risk factors
- + chronic kidney disease (CKD)

are automatically at VERY HIGH or HIGH TOTAL CARDIOVASCULAR RISK and need active management of all risk factors.

Intervention strategies as a function of total CV risk and LDL-C level

 Table 3
 Intervention strategies as a function of total CV risk and LDL-C level

Total CV risk (SCORE) %	LDL-C levels					
	<70 mg/dL <1.8 mmol/L	70 to <100 mg/dL 1.8 to <2.5 mmol/L	100 to <155 mg/dL 2.5 to <4.0 mmol/L	155 to <190 mg/dL 4.0 to <4.9 mmol/L	>190 mg/dL >4.9 mmol/L	
<	No lipid intervention	No lipid intervention	Lifestyle intervention	Lifestyle intervention	Lifestyle intervention, consider drug if uncontrolled	
Class ^a /Level ^b	I/C	I/C	I/C	I/C	IIa/A	
≥l to <5	Lifestyle intervention	Lifestyle intervention	Lifestyle intervention, consider drug if uncontrolled	Lifestyle intervention, consider drug if uncontrolled	Lifestyle intervention, consider drug if uncontrolled	
Class ^a /Level ^b	I/C	I/C	IIa/A	Ila/A	I/A	
>5 to <10, or high risk	Lifestyle intervention, consider drug*	Lifestyle intervention, consider drug*	Lifestyle intervention and immediate drug intervention	Lifestyle intervention and immediate drug intervention	Lifestyle intervention and immediate drug intervention	
Class ^a /Level ^b	IIa/A	IIa/A	IIa/A	I/A	I/A	
≥10 or very high risk	Lifestyle intervention, consider drug*	Lifestyle intervention and immediate drug intervention				
Class ^a /Level ^b	lla/A	Ila/A	I/A	I/A	I/A	

*In patients with MI, statin therapy should be considered irrespective of LDL-C levels.^{13,14}

^aClass of recommendation

^bLevel of evidence. References to level A: 15–41.

 $\mathsf{CV} = \mathsf{cardiovascular}; \mathsf{LDL-C} = \mathsf{low-density} \ \mathsf{lipoprotein-cholesterol}; \ \mathsf{MI} = \mathsf{myocardial} \ \mathsf{infarction}.$

Pharmacological interventions:

Table 14Recommendations for the pharmacologicaltreatment of hypercholesterolaemia

Recommendations	Class ^a	Level ^b	Ref ^c
Prescribe statin up to the highest recommended dose, or highest tolerable dose to reach the target level.	I	A	15, 16, 17
In the case of statin intolerance, bile acid sequestrants or nicotinic acid should be considered.	lla	B	108, 120
A cholesterol absorption inhibitor, alone or in combination with bile acid sequestrants or nicotinic acid, may also be considered in the case of statin intolerance.	ШЬ	C	-
If target level is not reached, statin combination with a cholesterol absorption inhibitor or bile acid sequestrant or nicotinic acid may be considered.	ПЬ	с	-

Lifestyle modifications:

There is strong evidence showing that dietary factors may influence atherogenesis directly or through effects on traditional risk factors such as lipid levels, blood pressure, or glucose levels.

Most evidence linking nutrition to CVD is based on observational studies and on investigations of the effects of dietary changes on lipid levels. The influence of lifestyle changes and of functional foods on lipoproteins is considered and summarized in Table 9.

	Magnitude of the effect	Level of evidence	References
Lifestyle interventions to reduce TC and LDL-C levels			
Reduce dietary saturated fat	+++	A	63
Reduce dietary trans fat	+++	A	64
Increase dietary fibre	++	A	65
Reduce dietary cholesterol	++	В	66
Utilize functional foods enriched with phytosterols	+++	A	67
Reduce excessive body weight	+	В	68
Utilize soy protein products	+	В	69
Increase habitual physical activity	+	A	70
Utilize red yeast rice supplements	+	B	71,72
Utilize polycosanol supplements	-	В	73
Lifestyle interventions to reduce TG levels			
Reduce excessive body weight	+++	A	68
Reduce alcohol intake	+++	A	74
Reduce intake of mono- and disaccharides	+++	A	75, 76
Increase habitual physical activity	++	A	77
Reduce total amount of dietary carbohydrate	++	A	78
Utilize supplements of n-3 polyunsaturated fat	++	A	79
Replace saturated fat with mono- or polyunsaturated fat	+	В	63
Lifestyle interventions to increase HDL-C levels			
Reduce dietary trans fat	+++	A	64
Increase habitual physical activity	+++	A	77
Reduce excessive body weight	++	A	68
Reduce dietary carbohydrates and replace them with unsaturated fat	++	A	78
Use alcohol with moderation	++	В	80
Among carbohydrate-rich foods prefer those with low glycaemic index and high fibre content	+	с	
Quit smoking	+	В	81
Reduce intake of mono- and disaccharides	+	с	-

+++ = general agreement on the effects on lipid levels.

++=less pronounced effects on lipid levels; weight of evidence/opinion is in favour of efficacy.

+ = conflicting evidence; efficacy is less well established by evidence/opinion.

– = not effective and/or uncertainties regarding safety.
 HDL-C = high-density lipoprotein-cholesterol; LDL-C = low-density lipoprotein-cholesterol; TG = triglyceride.

Summary of lifestyle measures and healthy food choices for managing total CV risk:

- Dietary recommendations should always take into account local food habits. However, _ interest in healthy food choices from other cultures should be promoted.
- A wide variety of foods should be eaten. Energy intake should be adjusted to prevent overweight and obesity.
- Consumption of fruit, vegetables, legumes, nuts, wholegrain cereals and bread, fish (especially oily) should be encouraged.
- Saturated fat should be replaced with the above foods and with monounsaturated and polyunsaturated fats from vegetable sources, in order to reduce energy intake from total fat to < 35% of energy, saturated fat to < 7% of total energy, trans fats to < 1% of total energy, and dietary cholesterol to < 300 mg/day.

- Salt intake should be reduced to < 5 g/day by avoiding table salt and limiting salt in cooking, and by choosing fresh or frozen unsalted foods. Many processed and convenience foods, including bread, are high in salt.
- For those who drink alcoholic beverages, moderation should be advised (< 10-20 g/day for women and < 20-30 g/day for men) and patients with hypertriglyceridaemia should abstain.
- The intake of beverages and foods with added sugars, particularly soft drinks, should be limited, particularly for patients with hypertriglyceridaemia.
- Physical activity should be encouraged, aiming at regular physical exercise for at least 30 minutes/day every day.
- Use and exposure to tobacco products should be avoided.

Recommendations: specific populations:

Elderly

The strongest driver of CVD risk is age, which may be regarded as 'exposure time' to risk factors. This raises the issue that Table 3 might suggest that most older men in high risk countries who smoke would be candidates for drug treatment, even if they have satisfactory blood pressure and lipid levels. To date, this is not supported by trial evidence, and the clinician is strongly recommended to use clinical judgement in making therapeutic decisions in older people, with a firm

commitment to lifestyle measures such as smoking cessation in the first instance.

Elderly individuals (older than 65 years) are a high risk group who could benefit significantly from lipid-lowering therapy to reduce CV morbidity and mortality.

Evidence for treatment above the age of 80–85 years is very limited, and clinical judgement should guide decisions in the very old.

In some age categories the vast majority, especially of men, will have estimated CV death risks exceeding the 5–10% level, based on age (and gender) only, even when other CV risk factor levels are relatively low. This could lead to excessive usage of drugs in the elderly and should be evaluated carefully by the clinician.

Recommendation:

Treatment with statin is recommended for elderly patients with established CVD in the same way as for younger patients.

(class I)

Since elderly people often have comorbidities and have altered pharmacokinetics, it is recommended to start lipid-lowering medication at a low dose and then titrate with caution to achieve target lipid levels which are the same as in younger subjects.

(class I)

Statin therapy may be considered in elderly subjects free of CVD, particularly in the presence of at least one other CV risk factor besides age.

(class IIb)

Diabetes

Recommendation:

In all patients with type 1 diabetes and in the presence of microalbuminuria and renal disease, LDL-C lowering (at least 30%) with statins as the first choice (eventually drug combination) is recommended irrespective of the basal LDL-C concentration.

(class I)

In patients with type 2 diabetes and chronic cardiovascular or kidney disease (CVD or CKD) and in those without CVD who are over the age of 40 years with one or more other CVD risk factors or markers of target organ damage, the recommended goal for LDL-C is < 1.8 mmol/l (less than 70 mg/dl) and the secondary goal for non-HDL-C is < 2.6 mmol/l (100 mg/dl) and for apo B is < 80

mg/dl. (class I)

In all people with type 2 diabetes LDL-C < 2.5 mmol/l (less than 100 mg/dl) is the primary target. Non-HDL-C < 3.3 mmol/l (130 mg/dl) and apo B < 100 mg/dl are the secondary targets. (class I)

Renal disease:

Recommendations for lipid lowering drugs in patients with moderate to severe chronic kidney disease CKD (stages 2-4, GFR 15-89 mL/min/1.73 m2):

Recommendation:

CKD is acknowledged as a coronary artery disease (CAD) risk equivalent; in these patients LDL-C reduction is recommended as the primary target of therapy.

(class I)

LDL-C lowering reduces CVD risk in CKD subjects and should be considered.

(class IIa)

Statins should be considered to slow the rate of kidney function loss modestly and thus protect against the development of end-stage renal disease (ESRD) requiring dialysis.

(class IIa)

Since statins have a beneficial effect on pathological proteinuria (> 300 mg/day) they should be considered in patients with stage 2-4 CKD.

(class IIa)

In moderate to severe CKD statins as monotherapy or in combination with other drugs should be considered to achieve LDL-C < 1.8 mmol/l (less than 70 mg/dl).

(class IIa)

Recommendations: monitoring, compliance

Monitoring:

Table 33Summary of recommendations for
monitoring lipids and enzymes in patients on
lipid-lowering therapy

Testing lipids

Ho	Testing lipids w often should lipids be tested?
• B m w	efore starting lipid-lowering drug treatment, at least two easurements should be made, with an interval of 1–12 weeks , ith the exception of conditions where immediate drug treatment is uggested such as in ACS.
lipi • 8 • 8	w often should patients' lipids be tested after starting d-lowering treatment? (±4) weeks after starting drug treatment. (±4) weeks after adjustments to treatment until within the target inge.
pa t • A	w often should cholesterol or lipids be tested once a tient has reached target or optimal cholesterol? nnually (unless there is adherence problems or another specific eason for more frequent reviews).
	Monitoring liver and muscle enzymes
те • В • 8	w often should liver enzymes (ALT) be routinely asured in patients taking lipid-lowering drugs? efore treatment weeks after starting drug treatment or after any dose increase nnually thereafter if liver enzymes are <3×ULN
lipi lf < • C	nat if liver enzymes become raised in a person taking d-lowering drugs? 3×ULN: ontinue therapy echeck liver enzymes in 4–6 weeks
• St • C	alues rise to ≥3×ULN: top statin or reduce dose, recheck liver enzymes within 4–6 weeks autious reintroduction of therapy may be considered after ALT has aturned to normal
lov Pre- • Be	w often should CK be measured in patients taking lipid- vering drugs? treatment efore starting treatment baseline CK level >5×ULN, do not start drug therapy; recheck
• R	nitoring outine monitoring of CK is not necessary heck CK if patient develops myalgia
risk	rease alertness regarding myopathy and CK elevation in patients at s such as: elderly patients, concomitant interfering therapy, multiple dications, liver or renal disease.
dru	nat if CK becomes raised in a person taking lipid-lowering Igs? 5×ULN:
• C sı	cop treatment, check renal function and monitor CK every 2 weeks. onsider the possibility of transient CK elevation for other reasons uch as muscle exertion. onsider secondary causes of myopathy if CK remains elevated.
• If	5×ULN: no muscle symptoms, continue statin (patients should be alerted to eport symptoms; consider further checks of CK)

 $\mathsf{ACS}=\mathsf{acute}$ coronary syndrome; $\mathsf{ALT}=\mathsf{alanine}$ aminotransferase; $\mathsf{CK}=\mathsf{creatine}$ phosphokinase; $\mathsf{ULN}=\mathsf{upper}$ limit of normal.

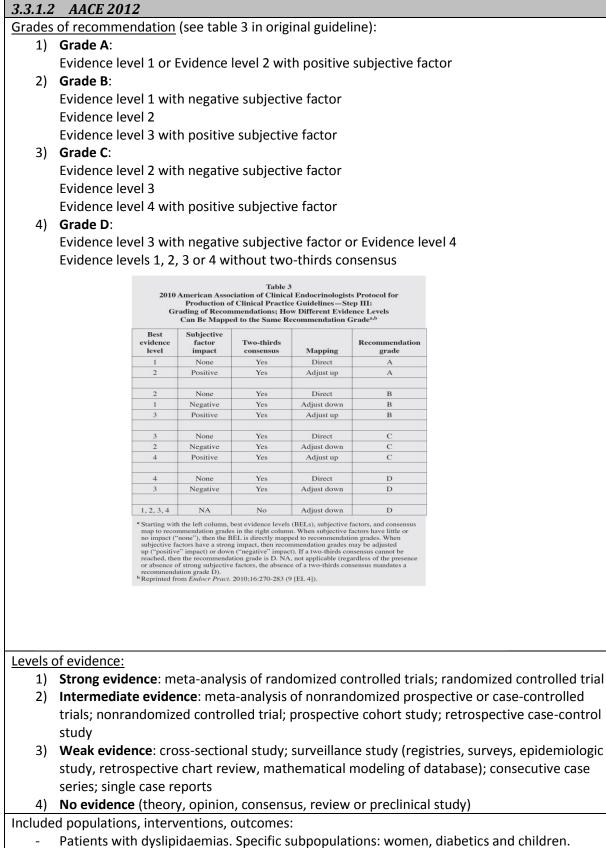

Compliance:

Table 34 Hints to help adherence to lifestyle changes

- Develop a good alliance with the patient.
- Make sure that the patient understands how lifestyles affect cardiovascular disease and use this to gain commitment to the change in behaviour.
- Explore potential barriers to the change.
- Design with the patient a lifestyle change plan that is realistic and encouraging.
- Reinforce the patient's efforts to change.
- Involve other experts wherever needed and possible.
- Arrange a schedule of follow-up visits.

Table 35Tips to help compliance with multiple drugtherapies

- Simplify the dosing regimen if possible by reducing daily doses and concomitant medications.
- Choose cheaper alternatives.
- · Provide clear written and oral instructions.
- Undertake a dialogue with the patient regarding adherence.
- Tailor the regimen to the patient's lifestyle and needs.
- · Involve the patient as partner in the treatment.
- Use behavioural strategies (reminder systems, cues, self-monitoring, feedback, reinforcement)

Physical activity, nutrition, smoking cessation, pharmacologic therapy: statins, fibrates, niacin, bile acid sequestrants, cholesterol absorption inhibitors

 Total cardiovascular risk, level of total cholesterol, level of low-density lipoprotein LDL cholesterol, level of high-density lipoprotein HDL cholesterol, level of non-high-density lipoprotein non-HDL cholesterol, triglycerides, apolipoproteins.

Members of development group, target population:

- Endocrinologists
- Endocrinologists and other clinicians

Recommendations: screening

How?

Recommendation:

Identify risk factors and categorize degrees of risk (Table 6) which enables the physician to personalize therapy for dyslipidemia according to each patient's risk level and thereby maximize treatment effectiveness

(Grade A)

Major risk factors include advancing age, high serum total cholesterol levels, high non-HDL-C levels, high LDL-C levels, established CAD, family history of CAD, presence of hypertension or diabetes mellitus and cigarette smoking. *Additional risk factors* (obesity, family history, elevated apo B, increased LDL particle number, small dense LDL, fasting/postprandial hypertriglyceridemia, polycystic ovary syndrome in women, dyslipidemic triad) should be considered, as should *nontraditional risk factors* (e.g. inflammatory markers, highly sensitive C-reactive protein [CRP], lipoprotein-associated phospholipase A2 [Lp-PLA2], lipoprotein [a], hyperhomocysteinemia, hyperuricemia). **(Grade A)**

Determine the *10-year risk* (high, intermediate, low) of a coronary event using the <u>Framingham Risk</u> <u>Assessment Tool or Reynolds Risk Score</u> (www.reynoldsriskscore.org), (the latter includes highly sensitive CRP and family history of premature CAD) (Grade A).

Because of the diagnostic difficulties and differences in clinical presentation, AACE recommends that special attention be given to *assessing women for CAD risk*. Determine the 10-year risk (high, intermediate, low) of a coronary event using Reynolds Risk Score (www.reynoldsriskscore.org) or the Framingham Risk Assessment Tool. **(Grade A)**

The Framingham Risk Score provides 10-year probability of women experiencing a coronary event in the presence of specific clinical diagnoses or scenarios (Evidence level 3-4) but unlike the Reynolds Risk Score, it appears to underestimate CAD risk in women with 2 risk factors.

Categorize lipid-related risks as optimal/near-optimal, borderline, and high risk (Evidence level 4). An HDL-C concentration greater than 60 mg/dL is an independent negative risk factor in both sexes, and when the HDL-C concentration is greater than 60 mg/dL, 1 risk factor can be subtracted from a patient's overall risk profile

(Grade A).

AACE recommends classifying *elevated triglycerides* (Evidence level 4) to aid in treatment decisions. **(Grade A)**

Table 6 Coronary Artery Disease Risk Categories and Low-Density Lipoprotein Treatment Goals

(20 [EL 4], 22 [EL 4], 23 [EL 4])

Risk category	Risk factors ^a /10-year risk ^b	LDL-C treatment goal
Very high risk	Established or recent hospitalization for coronary, carotid, and peripheral vascular disease or diabetes plus 1 or more additional risk factor(s)	<70 mg/dL
High risk	≥2 risk factors and 10-year risk >20% or CHD risk equivalents ^c , including diabetes with no other risk factors	<100 mg/dL
Moderately high risk	≥2 risk factors and 10-year risk 10%-20%	<130 mg/dL
Moderate risk	≥2 risk factors and 10-year risk <10%	<130 mg/dL
Low risk	≤1 risk factor	<160 mg/dL

Abbreviations: CHD, coronary heart disease; LDL-C, low-density lipoprotein cholesterol.

^a Major independent risk factors are high low-density lipoprotein cholesterol, polycystic ovary syndrome, cigarette smoking, hypertension (blood pressure \geq 140/90 mm Hg or on hypertensive medication), low high-density lipoprotein cholesterol (<40 mg/dL), family history of coronary artery disease (n male first-degree relative younger than 55 years; in female first-degree relative younger than 65 years), and age (men \geq 45; women \geq 55 years). Subtract 1 risk factor if the person has high high-density lipoprotein cholesterol (\geq 60 mg/dL) (10 [EL 4], 11 [EL 4]).

^b Framingham risk scoring is applied to determine 10-year risk (10 [EL 4]).

^c Coronary artery disease risk equivalents include diabetes and clinical manifestations of noncoronary forms of atherosclerotic disease (peripheral arterial disease, abdominal aortic aneurysm, and carotid artery disease).

Who?

Recommendation:

AACE recommends more frequent assessments for <u>all patients with a family history</u> of premature CAD (definite myocardial infarction [MI] or sudden death before age 55 years in father or other male first-degree relative, or before age 65 years in mother or other female first-degree relative) **(Grade C)**.

AACE suggest considering more frequent testing for individuals with <u>CAD risk factors</u> (Grade C)

<u>Adults With Diabetes</u>: Annually screen all adult patients with diabetes mellitus for dyslipidemia (Grade B)

<u>Young Adults</u> (Men Aged 20-45 Years, Women Aged 20-55 Years): Evaluate all adults 20 years of age for dyslipidemia every 5 years as part of a global risk assessment (Grade A)

<u>Middle-Aged Adults</u> (Men Aged 45-65 Years, Women Aged 55-65 Years): In the absence of CAD risk factors, screen middle-aged persons for dyslipidemia at least every 1 to 2 years. AACE recommends more frequent lipid testing when multiple global CAD risk factors are present **(Grade C)**. The frequency of testing should be based on individual clinical circumstances and the clinician's best judgment

(Grade C).

<u>Older Adults</u> (Older Than 65 Years): Annually screen older adults with 0 to 1 CAD risk factor for dyslipidemia.

(Grade C)

In addition, older patients should undergo lipid assessment if they have multiple CAD global risk factors (i.e. risk factors other than age).

(Grade C)

AACE believes that screening recommendations apply based on age and risk, not based on sex; therefore, women should be screened in the same way as men. **(Grade A)**

What?

Recommendation:

Fasting Lipid Profile:

Use a fasting lipid profile to ensure the most precise lipid assessment. This should include total cholesterol, LDL-C, triglycerides, and HDL-C.

(Grade C)

Low-Density Lipoprotein Cholesterol :Calculated

AACE does not recommend estimating LDL-C values in certain clinical circumstances. LDL-C is frequently and inexpensively estimated using the Friedewald equation :

(Grade A)

LDL-C = [(total cholesterol – HDL-C) – triglycerides]/5

However, this method is valid only for values obtained during the fasting state. It becomes increasingly inaccurate when triglyceride levels are greater than 200 mg/dL, and the equation is no longer valid when triglyceride levels are greater than 400 mg/dL.

Low-Density Lipoprotein Cholesterol :Direct Measurement

AACE recommends direct measurement of LDL-C in certain high-risk patients, such as those with fasting triglyceride levels greater than 250 mg/dL or those with diabetes mellitus or known vascular disease

(Grade C).

High-Density Lipoprotein Cholesterol:

AACE recommends measurement of HDL-C as a screening test for dyslipidemia. Low HDL-C can act synergistically with other lipid risk factors to increase CAD risk. An HDL-C concentration greater than 60 mg/dL is an independent *negative* risk factor in both sexes.

Non-High-Density Lipoprotein Cholesterol:

Calculate non–HDL-C (total cholesterol minus HDL-C) in patients with moderately elevated triglycerides (200 to 500 mg/dL), diabetes mellitus, and/or established CAD (Grade C)

(Grade C).

If insulin resistance is suspected, AACE recommends evaluating non–HDL-C to gain useful information regarding the patient's total atherogenic lipoprotein burden. In addition, in any circumstance when triglycerides are 200 mg/dL or greater but less than 500 mg/dL, a non–HDL-C calculation will provide better risk assessment than LDL-C alone.

(Grade C)

Non–HDL-C targets are 30 mg/dL higher than established LDL-C risk levels. (Grade C)

Recommendation:

Triglycerides:

Increasing clinical evidence suggests that elevated triglycerides may be an independent risk factor for CAD; therefore, AACE recommends screening of triglycerides as a component of lipid screening. Triglycerides levels that are even moderately elevated (>150 mg/dL) may identify individuals at risk for the insulin resistance syndrome. Triglyceride levels 200 mg/dL or greater may indicate a substantial increase in CAD risk. (Evidence level 4)

Apolipoproteins:

AACE recommends that optimal apo B levels for patients at risk of CAD, including those with diabetes, are less than 90 mg/dL, while patients with established CAD or diabetes who have 1 or more additional risk factor(s) should have an apo B goal of less than 80 mg/dL

(Grade D).

When the triglyceride level is greater than 150 mg/dL or the HDL-C level is less than 40 mg/dL, AACE believes that the apo B or the apo B to apo AI ratio may be particularly useful in assessing residual risk in patients at risk for CAD *(even when LDL-C levels are controlled)*; this includes patients with established CAD, type 2 diabetes, or the insulin resistance syndrome who are at high risk for CAD. AACE therefore recommends apo B testing in such patients

(Grade B).

AACE recommends apo B measurements to assess the success of LDL-C–lowering therapy. Apo B reflects LDL particle number, which may be elevated in patients at or below LDL-C goal. While LDL-C and LDL particle *size* (e.g. small dense LDL) are associated with atherogenicity, LDL particle *number* as reflected by apo B is a more potent measure of cardiovascular disease (CVD) risk than either of these 2 measures **(Grade B)**.

AACE believes that assessment of apo AI may be useful in certain cases.

(Grade B)

A normal apo AI level in a patient with low HDL-C suggests the existence of an adequate number of HDL-C particles that contain less cholesterol and may be an indication of less risk. The INTERHEART study found that the apo B to apo AI ratio was among the most significant risk factors for MI (Evidence level 2).

Additional Tests:

Assess *markers of inflammation* in patients where further stratification of risk is necessary. Highly sensitive CRP and Lp-PLA2 provide useful additional information in these instances and appear to be synergistic in predicting risk of CVD and stroke

(Grade B).

Use *highly sensitive CRP* to stratify CVD risk in patients with a standard risk assessment that is borderline, or in those with an LDL-C concentration less than 130 mg/dL (Grade 2; BEL B). Measure Lp-PLA2, which in some studies has demonstrated more specificity than highly sensitive CRP, when it is necessary to further stratify a patient's CVD risk, especially in the presence of systemic highly sensitive CRP elevations.

(Grade 2; BEL B)

AACE does not recommend routine measurement of *homocysteine, uric acid, plasminogen activator inhibitor 1, or other inflammatory markers* because the benefit of doing so is unclear.

(Grade 4; BEL D)

Noninvasive measures of atherosclerosis such as *carotid intima media thickness* (IMT) and *coronary artery calcification* should not be performed routinely, but may be used in certain clinical situations as adjuncts to standard CVD risk factors in an attempt to refine risk stratification and the need for more aggressive preventive strategies. Although coronary calcium correlates strongly with coronary atherosclerosis, there is a lack of definite evidence that this risk factor independently predicts coronary events.

(Grade 4; BEL D)

Recommendations: targets:

See also table 6 in the chapter: screening Lipid parameter Goal TC, mg/dL <200 <100; <70 (all very high risk patients) LDL-C, mg/dL (Grade A) HDL-C, mg/dL As high as possible, but at least >40 in both men and in women (Grade C) Non–HDL-C, mg/dL 30 above LDL-C goal (Grade A) TG, mg/dL <150 (Grade A) Apo B, mg/dL <90 (patients at risk of CAD, including those with diabetes) <80 (patients with established CAD or diabetes plus \geq 1 additional risk factor) (Grade D)

Recommendations: treatment:

Pharmacological therapy:

Recommendation:

AACE recommends aggressive lipid-modifying therapy to lower LDL-C to less than 100 mg/dL in patients with average or elevated LDL-C. This has been shown to reduce vascular mortality in patients at high risk

(Grade A)

and to decrease coronary death, MI, or any cardiovascular events in patients on aggressive statin therapy.

(Grade A)

AACE recommends an LDL-C goal less than 70 mg/dL as an appropriate goal for *all* patients with established CAD. Current evidence indicates that LDL-C can be aggressively lowered with statin therapy regardless of baseline levels and suggests that there is no threshold below which LDL-C lowering ceases to be effective.

(Grade A).

Reducing lipids to levels even below recommended targets may be beneficial for certain patients (e.g. those with metabolic syndrome).

Patients for whom AACE recommends aggressive therapy:

- Patients undergoing coronary artery bypass graft (Grade A)
- Patients with acute coronary syndrome (Grade A)
- Certain healthy and functional older patients at high risk who may be appropriate candidates for aggressive therapy (Grade A)

<u>Statins</u>:

AACE recommends statins as the drug of choice for LDL-C reduction on the basis of findings from

morbidity and mortality outcome trials (Grade A)

<u>Fibrates</u>:

AACE recommends fibrates for treatment of severe hypertriglyceridemia (triglycerides >500 mg/dL) (Grade A)

Cholesterol absorption inhibitor (ezetimibe):

Cholesterol absorption inhibitors are effective as monotherapy in reducing LDL-C and apo B. AACE recommends combination therapy with statins because current research indicates that this enhances these benefits and further improves the beneficial effects of statins on triglycerides and HDL-C. (Grade A)

It is uncertain whether cholesterol absorption inhibitor therapy has a direct benefit on reducing cardiovascular events

(Grade B)

Combination therapy:

Certain clinical situations warrant the use of a combination of lipid-lowering agents. Because the adverse effects of 2 or more drugs may be additive, clinical judgment is needed to balance the risks and benefits of combination therapy.

AACE recommends that combination therapy be considered in the following circumstances:

- When the cholesterol level is markedly increased and monotherapy does not achieve the therapeutic goal.

(Grade A)

The recent SHARP trial (Study of Heart and Renal Protection) demonstrated a reduction of LDL-C via treatment with simvastatin, 20 mg daily, plus ezetimibe, 10 mg daily, which safely reduced the incidence of major atherosclerotic events in a wide range of patients with advanced chronic kidney disease.

 When mixed dyslipidemia is present (Grade C)

Lifestyle

Recommendation:

Physical Activity: AACE recommends a reasonable and feasible approach to fitness therapy, ie, exercise programs that include at least 30 minutes of moderate-intensity physical activity (consuming 4-7 kcal/min) 4 to 6 times weekly, with an expenditure of at least 200 kcal/day. Suggested activities include brisk walking, riding a stationary bike, water aerobics, cleaning/scrubbing, mowing the lawn, and sporting activities

(Grade A; BEL 2)

Daily *physical activity* goals can be met in a single session or in multiple sessions throughout the course of a day (10 minutes minimum). For some patients, breaking activity up throughout the day may help improve adherence to physical activity programs (Grade B; BEL 4). In addition to aerobic activity, muscle-strengthening activity is recommended at least 2 days a week.

(Grade B; BEL 2)

Medical Nutrition Therapy: for adults, AACE recommends a reduced-calorie diet consisting of fruits and vegetables (≥5 servings/day),

(Grade A; BEL 2)

grains (≥6 servings/day, one-third of those as whole grains), fish, and lean meats. **(Grade B; BEL 2)**

Intake of saturated fats, trans fats, and cholesterol should be limited, while LDL-C–lowering macronutrient intake should include plant stanols/sterols (~2 g/day) and soluble fiber (10-25 g/day). (Grade A; BEL 1)

Smoking Cessation: every effort should be made to support patients in their efforts to cease smoking (Grade A; BEL 3)

Cigarette smoking is a powerful risk factor, especially for MI, peripheral vascular disease, and stroke. Smoking accelerates coronary plaque development and may lead to plaque rupture and is particularly dangerous in persons with advanced coronary atherosclerosis. Numerous studies have shown that smoking has a substantial, negative effect on HDL-C levels and the LDL-C to HDL-C ratio. Smoking also appears to have a negative effect on postprandial lipids, including triglycerides. However, smoking cessation significantly increases HDL-C, with improvement observed in as few as 30 days.

Recommendations: follow-up and monitoring:

Recommendation:

AACE recommends reassessing patients' *lipid status* 6 weeks after therapy initiation and again at 6-week intervals until the treatment goal is achieved. Thereafter, AACE recommends that patients be tested at 6- to 12-month intervals. The specific interval should depend on patient adherence to therapy and lipid profile consistency. If adherence is a concern or the lipid profile is unstable, the patient will probably benefit from biannual assessment.

(Grade C; BEL 4)

AACE recommends more frequent lipid status evaluation in the following clinical circumstances:

- Deterioration of diabetes control.
- The use of a new drug known to affect lipid levels.
- Progression of atherothrombotic disease.
- Considerable weight gain.
- An unexpected adverse change in any lipid parameter.
- Development of a new CAD risk factor.
- Convincing new clinical trial evidence or guidelines that suggest stricter lipid goals.

Recommendation:

AACE recommends that a *liver transaminase* level be measured before and 3 months after statin or fibric acid treatment initiation, because most liver abnormalities occur within 3 months of treatment initiation. AACE recommends that this test be repeated periodically (eg, semiannually). **(Grade A; BEL 3)**

AACE recommends that transaminase level assessment be repeated at these intervals whenever lipid-altering therapy is restarted, increased, changed, or combined.

(Grade A; BEL 3)

Recommendation:

AACE recommends assessment of *creatine kinase* levels whenever a patient reports clinically significant myalgias or muscle weakness.

(Grade A; BEL 3)

	ESC 2013 (chapt. 6.4)
	ne ESC 2013 guidelines on diabetes, pre-diabetes and cardiovascular diseases only the
	about dyslipidemia is discussed here.
-	of recommendation:
1)	Class I : evidence and/or general agreement that a given treatment or procedure is
2)	beneficial, useful, effective.
2)	Class II: conflicting evidence and/or a divergence of opinion about the usefulness/efficacy
	of the given treatment or procedure.
	a. weight of evidence/opinion is in favor of usefulness/efficacy.
2)	b. usefulness/efficacy is less well established by evidence/opinion.
3)	Class III: evidence and/or general agreement that the given treatment or procedure is not
	useful/effective, and in some cases may be harmful.
Levels o	of evidence:
1)	Level A: Data derived from multiple randomized clinical trials or meta-analyses.
2)	Level B: Data derived from a single randomized clinical trial or large non-randomized
	studies.
3)	Level C: Consensus of opinion of the experts and/or small studies, retrospective studies,
	registries.
Include	d populations, interventions, outcomes:
-	Patients with type 1 and type 2 diabetes mellitus
_	Physical activity, diet, weight reduction, smoking cessation, pharmacologic therapy: statins,
	ezetimibe, fibrates
-	Cardiovascular events, level of LDL-C, HDL-C, triglycerides, all-cause mortality, progression
	of atheroma, adverse events: muscle symptoms
Membe	ers of development group, target population:
-	Cardiologists, endocrinologists
-	Health professionals
Recom	mendation:
Statin t combin and/or LDL-C re	herapy is recommended in patients with type 1 and type 2 diabetes at very high risk (i.e. if ed with documented CVD, severe CKD or with one or more cardiovascular risk factors target organ damage) with an LDL-C target of < 1.8 mmol/l (< 70 mg/dl) or at least \geq 50% eduction if this target goal cannot be reached.
cardiov 100 mg	herapy is recommended in patients with type 2 diabetes at high risk (without any other ascular risk factor and free of target organ damage) with an LDL-C target of < 2.5 mmol/l (< /dl). Ievel A)
irrespe	may be considered in type 1 diabetes patients at high risk for cardiovascular events ctive of the basal LDL-C concentration. I b, level C)
with dia	be considered to have a secondary goal of non-HDL-C < 2.6 mmol/l (< 100 mg/dl) in patients abetes mellitus at very high risk and of < 3.3 mmol/l (< 130 mg/dl) in patients at high risk. b, level C)

Intensification of statin therapy should be considered before the introduction of combination therapy with the addition of ezetimibe. **(Class IIa, level C)**

The use of drugs that increase HDL-C to prevent CVD in type 2 diabetes is not recommended. (Class III, level A)

3.3.1.4 UMHS 2012

Grades of recommendation:

- 1) **Class I**: treatment or procedure generally should be performed.
- 2) **Class II**: treatment or procedure may be reasonable to perform.
- 3) Class III: treatment or procedure should not be performed.

Levels of evidence:

- 1) **Level A:** Data derived from randomized controlled trials
- 2) **Level B:** Data derived from non-randomized controlled trials
- 3) Level C: Data derived from observational trials
- 4) Level D: Opinion of expert panel

Included populations, interventions, outcomes:

- Adults 20-75 years without familial or severe dyslipidemias
- Lifestyle modification (smoking cessation, diet, exercise, weight reduction) and drug therapy (statins, fibrates, niacin, resins, ezetimibe)
- Lipid and CHD profile, level of LDL-C, HDL-C, triglycerides, non-HDL-C

Members of development group, target population:

- Family doctors and cardiologists
- Primary care providers

Recommendations: primary prevention: screening

Screen men age 35 and older and age 20 to 35 if at increased risk for CHD. Screen women only if at increased risk for CHD.

(Class I, level C)

Repeat screening in 5 years in patients with normal lipids (Class II, level D)

Screening with fasting lipid profile is advised. If screened non-fasting for patient convenience, followup on abnormal non-fasting lipids with a fasting lipid profile.

Recommendations: primary prevention: risk assessment:

Risk factors are cigarette smoking, hypertension (blood pressure 140/90 mm Hg or on antihypertensive medication) low HDL cholesterol (< 40 mg/dl), family history of premature CHD (CHD in first-degree relative: male <55 years or female <65 years), age (men \geq 45 years: women \geq 55 years)

Determination of risk can be facilitated by using the Framingham based Global Risk Score, which predicts 10 year risk of a coronary event (level C).

Note: Framingham 10-Year Risk Score can be calculated at http://cvdrisk.nhlbi.nih.gov/calculator.asp

Recommendations: primary prevention: treatment:

Initial treatment: lifestyle modification - smoking cessation, diet, exercise, and weight reduction (Class I, level A)

Evaluate LDL-C response in 6 weeks to 6 months based on patient's cardiovascular risk. (Class I, level D)

Drug therapy: consider if LDL-C remains above threshold patients with low risk \ge 190 mg/dl, moderate risk \ge 160 mg/dl, moderately high risk \ge 130 mg/dl (Class II, level A)

Evidence is insufficient to recommend drug therapy for low HDL-C or high triglycerides for primary prevention.

 Candidates. Confirm appropriate for primary prevention. Men age 35 and older; age 20–35 if increased risk for CHD Women age 20 and older if increased risk for CHD For candidates, go to next step. 	 (Step 8 continued) If not starting drug therapy: Reinforce lifestyle modifications (as appropriate: smoking cessation, diet, exercise, weight loss, reduce 	
 Laboratory testing. Obtain lipid/CHD profile – fasting advised. If screened non-fasting and lipids abnormal, perform fasting lipid panel. 	 excessive alcohol) Follow-up lipids in 1 to 2 years. If risk sufficient to start drug therapy, go to next step. 	
3. Abnormal levels? Is: HDL-C \leq 40 mg/dl or TC \geq 240 mg/dl or TC . 200 mg/dl with 2 or more CHD risks (Table 3)? If normal levels: reinforce lifestyle education (as	 9. Initiate drug therapy. Check baseline ALT.** Treat with statin (see Tables 6, 7, and 8) 	
appropriate: smoking cessation, diet, exercise, weight loss) and repeat screen in 5 years. If abnormal levels, go to next step.	10. Initial follow-up. Check lipids in 6–12 weeks. Check ALT as indicated.** Check creatinine kinase (CK) only if patient has symptomatic muscle aches and weakness.	
 Secondary causes? Consider and treat any secondary causes (Table 4). 	 Lipid goal met? See Table 5 for lipid goals. If lipid goal not met: 	
5. Lifestyle modifications. As appropriate, address smoking cessation, diet, exercise, weight loss, reduce excessive alcohol.	 Address adherence Reinforce lifestyle modifications Modify drug treatment, e.g., increase statin. See Table 	
 Lipid profile. Obtain a lipid profile periodically (6 weeks to 6 months) to assess efficacy of lifestyle / lipid lowering therapy. 	 9 for statin intolerance. Consider referral to specialist in lipid management. 	
7. Triglycerides elevated? If triglycerides > 400 mg/dl, see text for triglyceride management. If triglycerides \geq 200 mg/dL, calculate non-HDL cholesterol. Non-HDL cholesterol = total cholesterol – HDL cholesterol. If triglycerides \leq 400 mg/dl go to next step.	 Follow-up in 6–12 weeks and reassess whether lipid goal met (repeat step 11). If lipid goal met or no further reduction likely, go to next step. 12. Longer term follow-up. Follow-up lipids at least 	
8. Risks sufficient to start drug therapy? See Table 5 for risks levels to initiate drug therapy. (Continues on next column.)	annually.	
* Assumes candidate does not already have a disease that requires athlerosclerotic cardiovascular disease, and diabetes mellitus. ** Careful follow-up of liver tests is indicated for those with know who are on other potentially hepatotoxic medications. For othe no further monitoring is required. If baseline LFTs are mildly a permelly monitor. LFTs during first 6 months of statis in testament	In liver disease, risk factors for liver disease, or in patients er patients, if baseline liver function tests (LFTs) are normal, ubnormal (over upper limit of normal but $< 5 X$ upper limit of	

normal): monitor LFTs during first 6 months of statin treatment for stability. Abnormal baseline liver biochemistries can frequently improve with statin therapy.

Recommendations: secondary prevention: screening:

Recommendation:

Screen with a full lipid panel all patients with CHD, other atherosclerotic cardiovascular disease (ASCVD), diabetes mellitus (DM), or Framingham 10 year risk >20%. (Class I, level A)

Recommendations: secondary prevention: risk assessment:

Determine whether patient risk for cardiovascular events is:

• High: CHD without major risk factors or other risks associated with "very high" risk.

• Very high: CHD or other atherosclerotic vascular disease plus one or more of: major risk factors

(e.g. diabetes, metabolic syndrome, active cigarette smoking), or acute coronary syndrome.

Recommendations: secondary prevention: treatment:

All patients: lifestyle modification (Class I, level A)

Drug therapy:

- Statin therapy should be considered for all patients. Statins reduce mortality and CHD/ASCVD endpoints, including if LDL-C < 100 mg/dl

(level A).

High potency statins (atorvastatin, rosuvastatin) at high doses reduce events more than low potency statins or high potency statins at low doses.

(level A)

Prescribe moderate dose of high potency statin (e.g. atorvastatin 20 mg daily or higher) even if low LDL-C

(Class I, level A).

Note: in DM patients age <40 with no other CHD risk, statin is only marginally cost-effective.

LDL-C goals: high risk \leq 100 mg/dl, very high risk substantially < 100 mg/dl

(Class II, level A)

Note: lower doses in special situations (elderly, renal insufficiency, cytochrome 3A4 inhibitors,...)

- Non statin lipid agents (fibrates, niacin, resins, ezetimibe) have less or no evidence for improved outcomes compared to statins.
 (level A)
- Combination therapy (statin + any other lipid agent) improves lipids, but may increase myopathy risk, and has not yet been shown to improve outcomes compared to statins.
 (Class II, level C)

Risk Category	LDL-C to Initiate Lifestyle Changes ^a	LDL-C to Consider Drug Therapy	LDL-C Goal	
Primary Prevention				
Low risk: 0-1 risk factors b	\geq 130 mg/dl	\geq 190 mg/dl	< 160 mg/dl	
Moderate risk: 2+ risk factors & 10-year risk < 10% °	\geq 130 mg/dl	\geq 160 mg/dl	<130 mg/dl	
Moderately high risk: 2+ risk factors & 10-year risk 10 to 20% ^c	All	\geq 130 mg/dl (option: \geq 100 mg/dl)	< 100 mg/dl	
Secondary Prevention				
CHD or CHD risk equivalent ^d without risk factors that are major or severe/poorly controlled ^e	All	All – at least moderate statin	< 100 mg/dl	
CHD or CHD risk equivalent ^d with risk factors that are major or severe/poorly controlled ^e	All	All – at least moderate statin	Substantially < 100 mg/dl (option: < 70 mg/dl)	

Table 5. Risk Categories for Initiating Lifestyle Change, Considering Drug Therapy, and LDL-C Goals

Note: This table was modified from ATP, based on HPS.

^a As appropriate, address smoking cessation, diet, exercise, weight loss, reduce excessive alcohol.

^b Almost all people with 0-1 risk factor have a 10-year risk $\leq 10\%$; thus 10-year risk assessment is not necessary.

^c Major risk factors are listed in Table 3. Electronic 10-year risk calculators are available at

"www.nhlbi.nih.gov/guidelines/cholesterol".

^d CHD includes history of myocardial infarction, unstable angina. Stable angina, coronary artery procedures (angioplasty or bypass surgery), or evidence of clinically significant myocardial ischemia. CHD risk equivalents include diabetes and clinical manifestations of non-coronary forms of atherosclerotic cardiovascular disease (ASCVD) such as peripheral arterial disease, abdominal aortic aneurysm, carotid artery disease, or Framingham score ≥20%.

^e Very high risk is established CHD (see above) plus one or more of: major risk factors (e.g. diabetes, metabolic syndrome – especially triglycerides ≥ 200 plus non-HDL-C ≥ 130 plus HDL-C < 40), current cigarette smoking or acute coronary syndrome.</p>

3

UMHS Screening and Management of Lipids, November 2012

Recommendations: specific populations:

Renal disease:

End Stage Renal Disease. A large RCT comparing atorvastatin (20 mg/d) to placebo in a diabetic dialysis population did not find a significant reduction in cardiovascular events with statin therapy. Atorvastatin was well tolerated, however.

Diabetes:

For patients with diabetes and no other CHD risk factors, statin therapy may reasonably be delayed until age 40 since statin use in this population is only marginally cost-effective.

Recommendations: adverse effects:

Table 9. Management of Statin Intolerant (muscle aches/myopathy) Patients Reversible causes. Check for reversible causes of muscle aches/myopathy while on statin (hypothyroidism, cytochrome 3A4 inhibitors). Consider drug interactions (cyclosporine and concomitant use of certain statins (atorvastatin, lovastatin, simvastatin) and other agents that are metabolized by the cytochrome P450 3A4 system. Alternative statin. Trial alternative low dose statin, and titrate up slowly. Alternate day dosing. If failing a second statin, consider a trial of alternate day dosed long acting statin (atorvastatin/rosuvastatin). Non-statin agents. If failing alternate day statin, consider one or more non-statin lipid lowering agents, including niacin, bile acid sequestrants, fibrates (if low HDL-C, high triglycerides), that have some evidence of CHD event reduction. Consider ezetimibe. If intolerant to second line agents, consider ezetimibe (LDL-C reduction but no data showing event reduction).

3.3.1.5 CCS 2013

This is an update of the CCS guideline on dyslipidemia 2009

Grades of recommendation:

GRADE methodology

1) **Strong recommendation**: based on the available evidence, if clinicians are very certain that benefits do, or do not, outweigh risks and burdens they will make a strong recommendation.

2) **Weak recommendation**: based on the available evidence, if clinicians believe that benefits and risks and burdens are finely balanced, or appreciable uncertainty exists about the magnitude of benefits and risks, they must offer a weak recommendation.

Levels of evidence:

- 1) **High quality evidence**: we are very confident that the true effect lies close to that of the estimate of the effect
- 2) **Moderate quality evidence**: we are moderately confident in the effect of estimate; the true effect is likely to be close to the estimate of the effect but there is a possibility that it is substantially different
- 3) **Low quality evidence**: our confidence in the effect estimate is limited; the true effect may be substantially different from the estimate of the effect
- 4) **Very low quality evidence**: we have very little confidence in the effect estimate; the true effect is likely to be substantially different from the estimate of effect

Included populations, interventions, outcomes:

- Men \ge 40 years of age, women \ge 50 years of age, up until 75 years.
- Nutrition therapy, exercise, psychological factors, smoking cessation, statin therapy, nonstatin therapy (combination with ezetimibe, niacin, bile acid resins, fibrates, gemfibrozil
- Level of LDL-C, HDL-C, non-HDL-C, Apo B

Members of development group, target population:

- Developed by family doctors and cardiologists, multidisciplinary experts
- Aimed for primary care providers and specialists
- Target population: Canadian population

Recommendations: screening:

Who?

Men \geq 40 years of age and women \geq 50 years of age or postmenopausal

(consider earlier in ethnic groups at increased risk such as South Asians or First Nations individuals) or

All patients with any of the following conditions, regardless of age:

- Current cigarette smoking
- Diabetes mellitus
- Arterial hypertension
- Family history of premature cardiovascular disease
- Family history of hyperlipidemia
- Erectile dysfunction
- Chronic kidney disease
- Inflammatory disease
- HIV infection
- Chronic obstructive pulmonary disease
- Clinical evidence of atherosclerosis or abdominal aneurysm
- Clinical manifestation of hyperlipidemia

- Obesity (BMI > 27)

How?

For all:

- History and examination, LDL, HDL, TG, non-HDL (will be calculated from profile), glucose, eGFR

Optional:

 apoB (instead of standard lipid panel), urine albumin:creatinine ratio (if eGFR < 60, hypertension, diabetes)

Apply Framingham Risk Score.

We recommend that *secondary testing* be considered for further risk assessment in "IR" patients (10%-19% FRS after adjustment for family history) who are not candidates for lipid treatment based on conventional risk factors or for whom treatment decisions are uncertain (Strong Recommendation, Moderate-Quality Evidence)

We suggest that secondary testing be considered for a selected subset of "LR to IR" patients (5%-9% FRS after adjustment for family history) for whom further risk assessment is indicated (eg, strong family history of premature CAD, abdominal obesity, South Asian ancestry, or impaired glucose tolerance)

(Weak/Conditional Recommendation, Low-Quality Evidence)

How often?

If Framingham risk score is < 5%, repeat every 3-5 years. If Framingham risk score is \ge 5%, repeat every year.

We recommend that a cardiovascular risk assessment, using the "10-Year Risk" provided by the Framingham model be completed every 3-5 years for men age 40-75, and women age 50-75 years. This should be modified (percent risk doubled) when family history of premature CVD is positive (i.e. first-degree relative < 55 years for men and < 65 years of age for women). A risk assessment might also be completed whenever a patient's expected risk status changes. Younger individuals with at least 1 risk factor for premature CVD might also benefit from a risk assessment to motivate them to improve their lifestyle

(Strong Recommendation, Moderate-Quality Evidence).

We recommend calculating and discussing a patient's "Cardiovascular Age" to improve the likelihood that patients will reach lipid targets and that poorly controlled hypertension will be treated (Strong Recommendation, High-Quality Evidence).

Recommendation: risk stratification:

- Low risk:
 No high risk features
 FRS < 10%
- Intermediate risk: No high risk features FRS 10-19%
- High risk:
- FRS ≥ 20%

Clinical vascular disease Abdominal Aortic Aneurysm Diabetes and age ≥ 40 yrs or >15 yrs duration and age ≥ 30 yrs or microvascular disease Chronic kidney disease High risk hypertension

Recommendations: targets:

Summary in figure 4 of original guideline. More details in figures 2 and 3.

Risk level	Initiate therapy if	Primary target LDL-C	Alternate target
High FRS ≥ 20%	Consider treatment in all (Strong, High)	≤ 2 mmol/L or ≥ 50% decrease in LDL-C (Strong, High)	*Apo B ≤ 0.8 g/L *Non HDL-C ≤ 2.6 mmol/L (Strong, High)
Intermediate FRS 10%-19%	*LDL-C ≥ 3.5 mmol/L (Strong, Moderate) *For LDL-C < 3.5 consider if: Apo B ≥ 1.2 g/L or Non-HDL-C ≥ 4.3 mmol/L (Strong, Moderate)	≤ 2 mmol/L or ≥ 50% decrease in LDL-C (Strong, Moderate)	*Apo B ≤ 0.8 mg/L *Non HDL-C ≤ 2.6 mmol/L (Strong, Moderate)
Low FRS < 10%	*LDL-C ≥ 5.0 mmol/L *Familial hypercholesterolemia (Strong, Moderate)	≥ 50% reduction in LDL-C (Strong, Moderate)	

Recommendations: treatment:

Lifestyle

Recommendation:

All individuals be encouraged to adopt healthy eating habits to lower their CVD risk: (1) moderate energy (caloric) intake to achieve and maintain a healthy body weight; (2) emphasize a diet rich in vegetables, fruit, whole-grain cereals, and polyunsaturated and monounsaturated oils, including omega-3 fatty acids particularly from fish;(3) avoid trans fats, limit saturated and total fats to < 7% and < 30% of daily total energy (caloric) intake, respectively; (4) increase daily fibre intake to > 30 g; (5) limit cholesterol intake to 200 mg daily for individuals with dyslipidemia or at increased CVD risk **(Conditional Recommendation, Moderate-Quality Evidence)**

We recommend the Mediterranean, Portfolio, or Dietary Approach to Stop Hypertension (DASH) diets to improve lipid profiles or decrease CVD risk,

(Strong Recommendation, High-quality Evidence)

and for cholesterol-lowering consider increasing phytosterols, soluble fibre, soy, and nut intake.

We recommend that adults should accumulate at least 150 minutes of moderate-to-vigorous intensity aerobic physical activity per week, in bouts of 10 minutes or more to reduce CVD risk. (Strong Recommendation, High-Quality Evidence)

We recommend smoking cessation (Strong Recommendation, Moderate-Quality Evidence), and limiting alcohol intake to 30 g or less per day (1-2 drinks). (Conditional Recommendation, Moderate-Quality Evidence)

Pharmacological treatment

Low Risk:

We recommend pharmacotherapy in LR individuals with LDL-C 5.0 mmol/L, or if there is evidence of genetic dyslipidemia (such as familial hypercholesterolemia) (Strong Recommendation, Moderate-Quality Evidence)

We recommend 50% reduction of LDL-C in LR individuals for whom treatment is initiated (Strong Recommendation, Moderate-Quality Evidence)

Intermediate Risk:

We recommend that the IR category include individuals with adjusted FRS 10% and 20% (Strong Recommendation, Moderate-Quality Evidence)

We recommend treating IR individuals with LDL-C 3.5 mmol/L. (Strong Recommendation, Moderate-Quality Evidence)

In IR individuals with LDL-C 3.5 mmol/L, apo B 1.2 g/L, or non-HDL-C 4.3 mmol/L is suggested to identify patients who might benefit from pharmacotherapy. (Strong Recommendation, Moderate-Quality Evidence)

We recommend a target LDL-C 2.0 mmol/L or 50% reduction of LDL-C for IR individuals in whom treatment is initiated

(Strong Recommendation, Moderate-Quality Evidence).

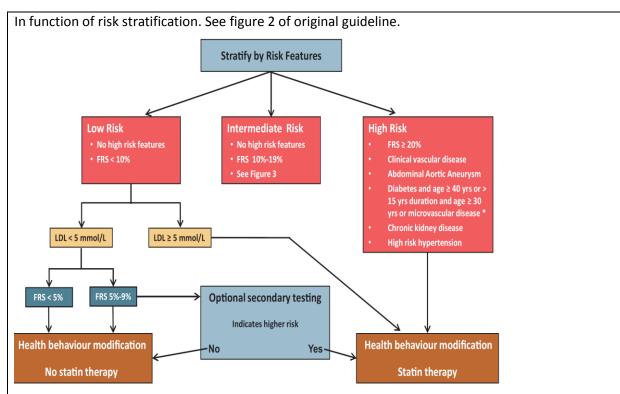
Alternative target variables are apo B0.8 g/L or non-HDL-C2.6 mmol/L (Strong Recommendation, Moderate-Quality Evidence).

High Risk:

We recommend that high risk be defined in subjects who have clinical atherosclerosis, abdominal aortic aneurysm, or an adjusted FRS of 20%.

(Strong Recommendation, High-Quality Evidence)

We have also included diabetes of 15 years duration and age older than 30 years, diabetes with age older than 40 years, or the presence of microvascular disease, high risk kidney disease, or high risk hypertension.


(Strong Recommendation, Moderate-Quality Evidence)

We recommend a target LDL-C 2.0 mmol/L or 50% reduction of LDL-C for IR individuals in whom treatment is initiated.

(Strong Recommendation, Moderate-Quality Evidence)

We recommend that apo B 0.80 g/L or non-HDL-C 2.6 mmol/L be considered as alternative treatment targets for optimal risk reduction.

(Strong Recommendation, High-Quality Evidence)

tisk stratification by Framingham Risk Score (FRS) and phenotype.*Not all subjects with diabetes are at high 10-year risk; included for based on randomized studies and high long-term risk.

Recommendations: specific populations

Elderly

For patients older than 75 years of age, the Framingham model is not well validated. Though clinical studies are currently under way to address this group, at this point clinical judgement is required in consultation with the patient to determine the value of pharmacotherapy. One approach is extrapolation of the modified FRS, and this approach identifies most subjects as having intermediate- to high-risk based on age.

Recommendations: monitoring adverse effects:

Because overall risk/benefit favours therapy in patients meeting criteria for lipid lowering therapy and cardiovascular risk reduction, we recommend that:

(1) despite concerns about a variety of other possible adverse effects, all purported statinassociated symptoms should be evaluated systematically, incorporating observation during cessation, reinitiation (same or different statin, same or lower potency, same or decreased frequency of dosing) to identify a tolerated, statin-based therapy for chronic use

(Strong Recommendation, Very Low-Quality Evidence);

and

(2) statins not be withheld on the basis of a potential, small risk of new-onset diabetes mellitus emerging during long-term therapy

(Strong Recommendation, Very Low-Quality Evidence).

We do not recommend vitamins, minerals, or supplements for symptoms of myalgia perceived to be statin-associated.

(Strong Recommendation, Very Low-Quality Evidence)

3.3.1.6 ACC AHA 2013 (bc)

<u>Grades of recommendation</u> (see tables 1a and 1b in original document):

- 1) **Grade A**: strong recommendation: there is high certainty based on evidence that the net benefit is substantial.
- 2) **Grade B**: moderate recommendation: there is moderate certainty based on evidence that the net benefit is moderate to substantial, or there is a high certainty that the net benefit is moderate.
- 3) **Grade C**: weak recommendation: there is at least moderate certainty based on evidence that there is a small net benefit.
- 4) **Grade D:** recommendation against: there is at least moderate certainty based on evidence that it has no net benefit or that risks/harms outweigh benefits.
- 5) **Grade E**: Expert opinion ("There is insufficient evidence or evidence is unclear or conflicting, but this is what the Work Group recommends."): Net benefit is unclear. Balance of benefits and harms cannot be determined because of no evidence, insufficient evidence, unclear evidence, or conflicting evidence, but the Work Group thought it was important to provide clinical guidance and make a recommendation. Further research is recommended in this area.
- 6) **Grade N**: No recommendation for or against ("There is insufficient evidence or evidence is unclear or conflicting."): Net benefit is unclear. Balance of benefits and harms cannot be determined because of no

evidence, insufficient evidence, unclear evidence, or conflicting evidence, and the Work Group thought no recommendation should be made. Further research is recommended in this area.

Levels of evidence:

1) High:

Well-designed, well-executed RCTs that adequately represent populations to which the results are applied and directly assess effects on health outcomes. MAs of such studies. Highly certain about the estimate of effect. Further research is unlikely to change our confidence in the estimate of effect

2) Moderate:

RCTs with minor limitations affecting confidence in, or applicability of, the results. Well-designed, well-executed nonrandomized controlled studies and well-designed, well-executed observational studies. MAs of such studies.

Moderately certain about the estimate of effect. Further research may have an impact on our confidence in the estimate of effect and may change the estimate

3) Low:

RCTs with major limitations. Nonrandomized controlled studies and observational studies with major

limitations affecting confidence in, or applicability of, the results. Uncontrolled clinical observations without an appropriate comparison group (e.g., case series, case reports). Physiological studies in humans. MAs of such studies.

Low certainty about the estimate of effect. Further research is likely to have an impact on our confidence in the estimate of effect and is likely to change the estimate

An alternative system of levels of recommendation is proposed in the guideline tables. We will not report this. Further information can be found in the original guideline.

Included populations, interventions, outcomes:

- Patients : secondary prevention and primary prevention adult patients
- Interventions: statins, fibrates, nicotinic acid, bile acid sequestrants, ezetimibe, omega-3 fatty acids.
- Outcomes: treatment of blood cholesterol levels to reduce atherosclerotic cardiovascular disease (ASCVD). ASCVD includes coronary heart disease (CHD), stroke, and peripheral

arterial disease, all of presumed atherosclerotic origin.

Members of development group, target population:

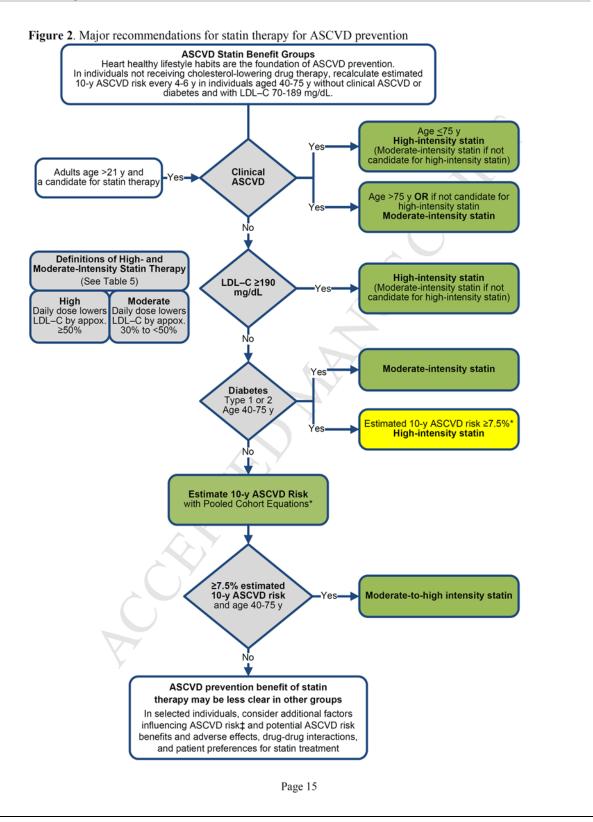
- Cardiologists, endocrinologists, primary care physicians, experts clinical lipidology, clinical trials, cardiovascular epidemiology, guideline development
- Adults >21 years of age

Recommendations: risk assessment:

4 major statin benefit groups:

4 major statin benefit groups were identified for whom the ASCVD risk reduction clearly outweighs the risk of adverse events. Individuals

1) with clinical ASCVD,


2) primary elevations of LDL-C >190 mg/dL,

3) diabetes aged 40 to 75 years with LDL-C 70 to189 mg/dL and without clinical ASCVD,

4) without clinical ASCVD or diabetes with LDL–C 70 to189 mg/dL and estimated 10-year ASCVD risk >7.5%.

Recommendations: treatment:

Pharmacological treatment

Table 4. Recommendations for Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults—Statin Treatment (High-, moderate-, and low-statin intensities are defined in Table 5)

Recommendations	NHLBI Grade	NHLBI Evidence Statements	ACC/AHA COR	ACC/AHA LOE
Treatment Targets				
 The panel makes no recommendations for or against specific LDL-C or non-HDL-C targets for the primary or secondary prevention of ASCVD. 	N (No recommendation)	1-4	N/A	N/A
Secondary Prevention				
 High-intensity statin therapy should be initiated or continued as first-line therapy in women and men ≤75 years of age who have <i>clinical ASCVD</i>*, unless contraindicated. 	A (Strong)	1, 6-8, 10-23, 26-28	Ι	А
2. In individuals with <i>clinical ASCVD</i> * in whom high-intensity statin therapy would otherwise be used, when high-intensity statin therapy is contraindicated ⁺ or when characteristics predisposing to statin-associated adverse effects are present, moderate-intensity statin should be used as the second option if tolerated (Table 8 for Safety of Statins, Recommendation 1).	A (Strong)	13-22, 24, 27, 28	I	А
3. In individuals with <i>clinical</i> ASCVD >75 years of age, it is reasonable to evaluate the potential for ASCVD risk-reduction benefits and for adverse effects, drug-drug interactions and to consider patient preferences, when initiating a moderate- or high-intensity statin. It is reasonable to continue statin therapy in those who are tolerating it.	E (Expert Opinion)		Па	B (16,20-43)
Primary Prevention in Individuals ≥21 Years of Age	With LDL−C ≥190	mg/dL		
 Individuals with LDL-C ≥190 mg/dL or triglycerides ≥500 mg/dL should be evaluated for secondary causes of hyperlipidemia (Table 6). 	B (Moderate)	75	I‡	B (44,45)
 Adults ≥21 years of age with primary LDL-C ≥190 mg/dL should be treated with statin therapy (10-year ASCVD risk estimation is not required): Use high-intensity statin therapy unless contraindicated. For individuals unable to tolerate high-intensity statin therapy, use the maximum tolerated statin intensity. 	B (Moderate)	6, 19, 28, 33- 35, 37, 38	I§	В

3. For individuals ≥21 years of age with an untreated primary LDL-C ≥190 mg/dL, it is reasonable to intensify statin therapy to achieve at least a 50% LDL-C reduction.	E (Expert Opinion)		IIa	B (20,46-50)
4. For individuals ≥21 years of age with an untreated primary LDL-C ≥190 mg/dL, after the maximum intensity of statin therapy has been achieved, addition of a nonstatin drug may be considered to further lower LDL-C. Evaluate the potential for ASCVD risk reduction benefits, adverse effects, drug-drug interactions, and consider patient preferences.	E (Expert Opinion)		Пр	C (51)
Primary Prevention in Individuals With Diabetes Me	ellitus and LDL-C 7	0-189 mg/dL		
1. Moderate-intensity statin therapy should be initiated or continued for adults 40 to 75 years of age with diabetes mellitus.	A (Strong)	19, 29-34, 40	I	А
 High-intensity statin therapy is reasonable for adults 40 to 75 years of age with diabetes mellitus with a ≥7.5% estimated 10-year ASCVD risk unless contraindicated. 	E (Expert Opinion)	S	Па	B (49,52)
 In adults with diabetes mellitus, who are <40 or >75 years of age, it is reasonable to evaluate the potential for ASCVD benefits and for adverse effects, for drug-drug interactions, and to consider patient preferences when deciding to initiate, continue, or intensify statin therapy. 	E (Expert Opinion)		Па	C (53-62)
Primary Prevention in Individuals Without Diabetes	Mellitus and With I	DL-C 70 to 189	mg/dL	
1. The Pooled Cohort Equations should be used to estimate 10-year ASCVD risk for individuals with LDL-C 70 to 189 mg/dL without <i>clinical ASCVD</i> * to guide initiation of statin therapy for the primary prevention of ASCVD.	E (Expert Opinion)		I	B (11)
 Adults 40 to 75 years of age with LDL-C 70 to 189 mg/dL, without <i>clinical</i> ASCVD* or diabetes and an estimated 10-year ASCVD risk ≥7.5% should be treated with moderate- to high-intensity statin therapy. 	A (Strong)	28, 34-36, 38, 42-44, 47, 49- 56, 76	Ι	А
 It is reasonable to offer treatment with a moderate- intensity statin to adults 40 to 75 years of age, with LDL-C 70 to 189 mg/dL, without <i>clinical</i> ASCVD* or diabetes and an estimated 10-year ASCVD risk of 5% to <7.5%. 	C (Weak)	28, 34-36, 38, 42-44, 47, 49- 56, 76	Па	В
4. Before initiating statin therapy for the primary prevention of ASCVD in adults with LDL-C 70- 189 mg/dL without <i>clinical</i> ASCVD* or diabetes it is reasonable for clinicians and patients to engage in a discussion which considers the potential for ASCVD risk reduction benefits and for adverse effects, for drug-drug interactions, and patient preferences for treatment.	E (Expert Opinion)		IIa	C (63)
 In adults with LDL-C <190 mg/dL who are not otherwise identified in a statin benefit group, or for whom after quantitative risk assessment a risk- 	E (Expert Opinion)		IIb	C (11,13)

factors¶ may be considered to inform treatment				
decision making. In these individuals, statin				
therapy for primary prevention may be considered				
after evaluating the potential for ASCVD risk				
reduction benefits, adverse effects, drug-drug				
interactions, and discussion of patient preferences.				
Heart Failure and Hemodialysis				
. The Expert Panel makes no recommendations regarding the initiation or discontinuation of statins in patients with NYHA class II–IV ischemic systolic heart failure or in patients on maintenance hemodialysis.	N (No Recommendation)	71, 72		
arterial revascularization, stroke, TIA, or periphera † Contraindications, warnings, and precautions are information (64-70). ‡Individuals with secondary causes of hyperlipiden were an exclusion criteria for almost all RCTs. The inappropriate statin therapy. §No RCTs included only individuals with LDL-C LDL-C ≥190 mg/dL and all of these trials consiste CTT meta-analyses have shown that each 39 mg/dI by 22%, and the relative reductions in ASCVD eve individuals with primary LDL-C ≥190 mg/dL shot ∥Estimated 10-year or "hard" ASCVD risk include fatal stroke as used by the Risk Assessment Work C ¶These factors may include primary LDL-C ≥160 µ of premature ASCVD with onset <55 years in a first high sensitivity-C-reactive protein >2 mg/L, CAC s ethnicity (for additional information, see http://www of ASCVD. Additional factors that may aid in indiv	defined for each stati nia were excluded fro erefore, ruling out sec ≥190 mg/dL. Howeven ntly demonstrated a r L reduction in LDL–C ents were consistent ac ald be treated with states first occurrence of Group in developing t mg/dL or other evider st degree male relative score ≥300 Agatston of w.mesa-nhlbi.org/CA	n according to the om RCTs reviewed ondary causes is n er, many trials did eduction in ASCV with statin therap cross the range of tin therapy. nonfatal MI, CHD the Pooled Cohort nce of genetic hyp e or <65 years in a units or \geq 75 percen CReference.aspx.)	manufacturer's p I. Triglycerides >: ecessary to avoid include individua D events. In addi by reduced ASCV LDL-C levels. Th death, and nonfa Equations. erlipidemias, fam first degree fema ntile for age, sex,), ABI <0.9, or lif	rescribing 500 mg/dL ls with tion, the 'D events herefore, tal and ily history le relative, and
ALT indicates alanine transaminase; ACC, Americ ASCVD, atherosclerotic cardiovascular disease; AS creatine kinase; COR, Class of Recommendation; H lipoprotein cholesterol; LOE, Level of Evidence; N	ST, aspartate aminotra HDL–C, high-density	ansferase; CAC, co lipoprotein choles	oronary artery cal sterol; LDL–C, lo ^v	cium; CK, w-density

Lifestyle

Lifestyle modification (i.e., adhering to a heart healthy diet, regular exercise habits, avoidance of tobacco products, and maintenance of a healthy weight) remains a critical component of health promotion and ASCVD risk reduction, both prior to and in concert with the use of cholesterol lowering drug therapies. Healthy diet or lifestyle modifications were recommended as background therapy for the RCTs of cholesterol-lowering drug therapy. See the 2013 Lifestyle Management Work Group Guideline (10) for lifestyle recommendations for healthy adults.

Recommendations: specific population:

Elderly

Fewer people >75 years of age were included in the statin RCTs reviewed. RCT evidence does support the *continuation* of statins beyond 75 years of age in persons who are already taking and tolerating these drugs.

A larger amount of data supports the use of moderate-intensity statin therapy for secondary prevention in individuals with clinical ASCVD >75 years of age. However, the few data available did not clearly support *initiation* of high-intensity statin therapy *for secondary prevention* in individuals >75 years.

Few data were available to indicate an ASCVD event reduction benefit in primary prevention among individuals >75 years of age who do not have clinical ASCVD. Therefore, *initiation of statins for primary prevention* of ASCVD in individuals >75 years of age requires consideration of additional factors, including increasing comorbidities, safety considerations, and priorities of care. The Pooled Cohort Equations can also provide information on expected 10-year ASCVD risk for those 76 to 79 years of aged that may inform the treatment decision. These factors may influence decisions about cholesterol-lowering drug therapy, especially in the primary prevention setting. Accordingly, a discussion of the potential ASCVD risk reduction benefits, risk of adverse effects, drug-drug interaction, and patient preferences precede the initiation of statin therapy for primary prevention in older individuals.

Diabetes:

See previously: table 4

Recommendations: adverse events:

Statin safety recommendations

To maximize the safety of statins, selection of the appropriate statin and dose in men andnonpregnant/nonnursing women should be based on patient characteristics, level of ASCVD* risk, and potential for adverse effects. Moderate-intensity statin therapy should be used in individuals in whom high-intensity statin therapy would otherwise be recommended when characteristics predisposing them to statin associated adverse effects are present.

Characteristics predisposing individuals to statin adverse effects include, but are not limited to:

- \cdot Multiple or serious comorbidities, including impaired renal or hepatic function.
- · History of previous statin intolerance or muscle disorders.

 \cdot Unexplained ALT elevations >3 times ULN.

 \cdot Patient characteristics or concomitant use of drugs affecting statin metabolism.

 \cdot >75 years of age.

Additional characteristics that may modify the decision to use higher statin intensities may include, but are not limited to:

· History of hemorrhagic stroke.

· Asian ancestry.

(Grade A)

CK should not be routinely measured in individuals receiving statin therapy.

(Grade A)

Baseline measurement of CK is reasonable for individuals believed to be at increased risk for adverse muscle events based on a personal or family history of statin intolerance or muscle disease, clinical presentation, or concomitant drug therapy that might increase the risk for myopathy.

(Grade E)

During statin therapy, it is reasonable to measure CK in individuals with muscle symptoms, including pain, tenderness, stiffness, cramping, weakness, or generalized fatigue. **(Grade E)**

Baseline measurement of hepatic transaminase levels (ALT) should be performed before initiating statin therapy.

(Grade B)

During statin therapy, it is reasonable to measure hepatic function if symptoms suggesting hepatotoxicity arise (e.g., unusual fatigue or weakness, loss of appetite, abdominal pain, darkcolored urine or yellowing of the skin or sclera).

(Grade E)

Decreasing the statin dose may be considered when 2 consecutive values of LDL–C levels are <40 mg/dL.

(Grade C)

It may be harmful to initiate simvastatin at 80 mg daily or increase the dose of simvastatin to 80 mg daily.

(Grade B)

Individuals receiving statin therapy should be evaluated for new-onset diabetes mellitus according to the current diabetes screening guidelines (93). Those who develop diabetes mellitus during statin therapy should be encouraged to adhere to a heart healthy dietary pattern, engage in physical activity, achieve and maintain a healthy body weight, cease tobacco use, and continue statin therapy to reduce their risk of ASCVD events.

(Grade B)

For individuals taking any dose of statins, it is reasonable to use caution in individuals >75 years of age, as well as in individuals that are taking concomitant medications that alter drug metabolism, taking multiple drugs, or taking drugs for conditions that require complex medication regimens (e.g., those who have undergone solid organ transplantation or are receiving treatment for HIV). A review of the manufacturer's prescribing information may be useful before initiating any cholesterol-lowering drug. **(Grade E)**

It is reasonable to evaluate and treat muscle symptoms, including pain, tenderness, stiffness, cramping, weakness, or fatigue, in statin-treated patients according to the following management algorithm:

 \cdot To avoid unnecessary discontinuation of statins, obtain a history of prior or current muscle symptoms to establish a baseline before initiating statin therapy.

• If unexplained severe muscle symptoms or fatigue develop during statin therapy, promptly discontinue the statin and address the possibility of rhabdomyolysis by evaluating CK, creatinine, and a urinalysis for myoglobinuria.

 \cdot If mild to moderate muscle symptoms develop during statin therapy:

- Discontinue the statin until the symptoms can be evaluated.

– Evaluate the patient for other conditions that might increase the risk for muscle symptoms (e.g., hypothyroidism, reduced renal or hepatic function, rheumatologic disorders such as polymyalgia rheumatica, steroid myopathy, vitamin D deficiency, or primary muscle diseases.)

- If muscle symptoms resolve, and if nocontraindication exists, give the patient the original or a lower dose of the same statin to establish a causal relationship between the muscle symptoms and statin therapy.

 If a causal relationship exists, discontinue the original statin. Once muscle symptoms resolve, use a low dose of a different statin.

Once a low dose of a statin is tolerated, gradually increase the dose as tolerated. If, after 2 months without statin treatment, muscle symptoms or elevated CK levels do not resolve completely, consider other causes of muscle symptoms listed above.

 If persistent muscle symptoms are determined to arise from a condition unrelated to statin therapy, or if the predisposing condition has been treated, resume statin therapy at the original

dose.

(Grade E)

For individuals presenting with a confusional state or memory impairment while on statin therapy, it may be reasonable to evaluate the patient for nonstatin causes, such as exposure to other drugs, as well as for systemic and neuropsychiatric causes, in addition to the possibility of adverse effects associated with statin drug therapy

(Grade E)

Nonstatin safety recommendations

<u>Ezetimibe:</u>

It is reasonable to obtain baseline hepatic transaminases before initiating ezetimibe. When ezetimibe is coadministered with a statin, monitor transaminase levels as clinically indicated, and discontinue ezetimibe if persistent ALT elevations >3 times ULN occur. (Grade C)

Fibrates:

Gemfibrozil should not be initiated in patients on statin therapy because of an increased risk for muscle symptoms and rhabdomyolysis.

(Grade B)

Fenofibrate may be considered concomitantly with a low- or moderate-intensity statin only if the benefits from ASCVD risk reduction or triglyceride lowering when triglycerides are

>500 mg/dL, are judged to outweigh the potential risk for adverse effects.

(Grade E)

Renal status should be evaluated before fenofibrate initiation, within 3 months after initiation, and every 6 months thereafter. Assess renal safety with both a serum creatinine level and an eGFR based on creatinine.

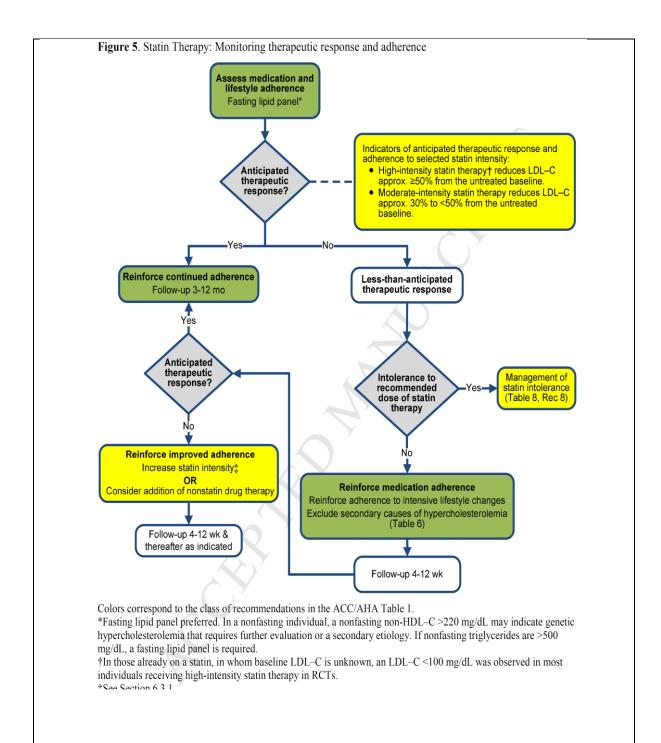
• Fenofibrate should not be used if moderate or severe renal impairment, defined as eGFR <30 mL/min per 1.73 m2, is present.

• If eGFR is between 30 and 59 mL/min per 1.73 m2, the dose of fenofibrate should not exceed 54 mg/day.

• If, during follow-up, the eGFR decreases persistently to ≤30 mL/min per 1.73 m2, fenofibrate should be discontinued.

(Grade B)

Recommendations: monitoring:


Monitoring statin therapy

Adherence to medication and lifestyle, therapeutic response to statin therapy, and safety should be regularly assessed. This should also include a fasting lipid panel performed within 4 to 12 weeks after initiation or dose adjustment, and every 3 to 12 months thereafter. Other safety measurements should be measured as clinically indicated. **(Grade A)**

Optimizing statin therapy:

The maximum tolerated intensity of statin should be used in individuals for whom a high- or moderate-intensity statin is recommended, but not tolerated. (Grade B)

Insufficient respons to statin therapy In individuals who have a less-than-anticipated therapeutic response or are intolerant of the recommended intensity of statin therapy, the following should be performed: Reinforce medication adherence. Reinforce adherence to intensive lifestyle changes. · Exclude secondary causes of Hyperlipidemia (Grade A) It is reasonable to use the following as indicators of anticipated therapeutic response to the recommended intensity of statin therapy. Focus is on the intensity of the statin therapy. As an aid to monitoring: · High-intensity statin therapy⁺ generally results in an average LDL–C reduction of \geq 50% from the untreated baseline; · Moderate-intensity statin therapy generally results in an average LDL–C reduction of 30 to <50% from the untreated baseline; · LDL–C levels and percent reduction are to be used only to assess response to therapy and adherence. They are not to be used as performance standards. (Grade E) In individuals at higher ASCVD risk receiving the maximum tolerated intensity of statin therapy who continue to have a less-than-anticipated therapeutic response, addition of a nonstatin cholesterol-lowering drug(s) may be considered if the ASCVD risk-reduction benefits outweigh the potential for adverse effects. Higher-risk individuals include: • Individuals with clinical ASCVD‡ <75 years of age. · Individuals with baseline LDL–C \geq 190 mg/dL. • Individuals 40 to 75 years of age with diabetes mellitus. Preference should be given to nonstatin cholesterol-lowering drugs shown to reduce ASCVD events in RCTs. (Grade E) In individuals who are candidates for statin treatment but are completely statin intolerant, it is reasonable to use nonstatin cholesterol lowering drugs that have been shown to reduce ASCVD events in RCTs if the ASCVD risk-reduction benefits outweigh the potential for adverse effects. (Grade E)

3.3.2 Cardiovascular prevention

3.3.2.1	ESC 2012
Grades	of recommendation:
1.	Class I: evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.
2.	Class II: conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure.
	 a. weight of evidence/opinion is in favor of usefulness/efficacy.
	 b. usefulness/efficacy is less well established by evidence/opinion.
3.	Class III: evidence and/or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.
Levels	of evidence:
1)	Level A: Data derived from multiple randomized clinical trials or meta-analyses.
2)	Level B: Data derived from a single randomized clinical trial or large non-randomized studies.
3)	Level C: Consensus of opinion of the experts and/or small studies, retrospective studies, registries.
Include	ed populations, interventions, outcomes:
-	Apparently healthy people
-	Lifestyle modification and drug therapy (statins, non-statin treatment, combination)
-	Lipid profile, level of LDL-C, HDL-C, triglycerides
Memb	ers of development group, target population:
-	Cardiologists
-	Primary care providers

Recommendations: screening:

Who?

In apparently healthy persons, CVD risk is most frequently the result of multiple interacting risk factors.

A risk estimation system such as <u>SCORE</u> can assist in making logical management decisions, and may help to avoid both under- and overtreatment.

Certain individuals are at high CVD risk without needing risk scoring and require immediate intervention for all risk factors.

In younger persons, a low absolute risk may conceal a very high relative risk, and use of the relative risk chart or calculation of their 'risk age' may help in advising them of the need for intensive lifestyle efforts.

While women appear to be at lower CVD risk than men, this is misleading as risk is deferred by ca. 10 years rather than avoided.

All-risk estimation systems are relatively crude and require attention to qualifying statements. Additional factors affecting risk can be accommodated in electronic risk estimation systems such as HeartScore (www.heartscore.org).

The total risk approach allows flexibility: if perfection cannot be achieved with one risk factor, risk can still be reduced by trying harder with others.

Recommendation:

Total risk estimation using multiple risk factors (such as SCORE) is recommended for asymptomatic adults without evidence of CVD.

(Class I, level C, strong recommendation)

High-risk individuals can be detected on the basis of established CVD, diabetes mellitus, moderate to severe renal disease, very high levels of individual risk factors, or a high SCORE risk, and are a high priority for intensive advice about all risk factors.

(Class I, level C, strong recommendation)

How?

Note: The detailed SCORE charts with integrated HDL-cholesterol values can be found on <u>http://www.escardio.org/guidelines-surveys/escguidelines/Pages/cvd-prevention.aspx</u> in the related materials section. See also appendices.

To estimate a person's 10-year risk of CVD death, find the correct table for their gender, smoking status, and age. Within the table find the cell nearest to the person's BP and total cholesterol or cholesterol:HDL cholesterol ratio. Risk estimates will need to be adjusted upwards as the person approaches the next age category.

Low-risk persons should be offered advice to maintain their low-risk status. While no threshold is universally applicable, the intensity of advice should increase with increasing risk. In general, those with a risk of CVD death of \geq 5% qualify for intensive advice, and may benefit from drug treatment.

At risk levels > 10%, drug treatment is more frequently required. In persons older than 60, these thresholds should be interpreted more leniently, because their age-specific risk is normally around these levels, even when other cardiovascular risk factor levels are 'normal'.

The relative risk chart may be helpful in identifying and counseling in young persons, even if

absolute risk levels are low ⁺ The charts may be used to give some indication of the effects of reducing risk factors, given that there will be a time lag before risk reduces and the results of RCTs in general give better estimates of benefits. Those who stop smoking in general halve their risk.

The charts can assist in risk assessment and management but must be interpreted in the light of the clinician's knowledge and experience, especially with regard to local conditions.

Risk will be overestimated in countries with a falling CVD mortality, and underestimated in countries in which mortality is increasing.

At any given age, risk estimates are lower for women than for men. Inspection of the charts indicates that risk is merely deferred in women, with a 60-year-old woman resembling a 50-year-old man in terms of risk.

Recommendations: risk assessment:

It is suggested that total risk assessment be offered during a consultation if:

- The person asks for it.
- One or more risk factors such as smoking, overweight, or hyperlipidaemia are known.
- There is a family history of premature CVD or of major risk factors such as hyperlipidaemia.
- There are symptoms suggestive of CVD.

Special efforts should be made to assess risk in the socially deprived who are more likely to carry a heavy burden of risk factors.

4 risk categories:

1) Very high risk

Subjects with any of the following:

- Documented CVD by invasive or non-invasive testing (such as coronary angiography, nuclear imaging, stress echocardiography, carotid plaque on ultrasound), previous myocardial infarction, ACS, coronary revascularization (PCI, CABG), and other arterial revascularization procedures, ischaemic stroke, peripheral artery disease (PAD).
- Diabetes mellitus (type 1 or type 2) with one or more CV risk factors and/or target organ damage (such as microalbuminuria: 30–300 mg/24 h).
- Severe chronic kidney disease (CKD) (GFR <30 mL/min/1.73 m2).
- A calculated SCORE $\geq 10\%$.

2) High risk

Subjects with any of the following:

- Markedly elevated single risk factors such as familial dyslipidaemias and severe hypertension.
- Diabetes mellitus (type 1 or type 2) but without CV risk factors or target organ damage.
- Moderate chronic kidney disease (GFR 30–59 mL/min/1.73 m2).
- A calculated SCORE of \geq 5% and <10% for 10-year risk of fatal CVD.

3) Moderate risk

Subjects are considered to be at moderate risk when their SCORE is ≥ 1 and <5% at 10 years. Many middle-aged subjects belong to this category. This risk is further modulated by factors mentioned above.

4) Low risk

The low-risk category applies to individuals with a SCORE <1% and free of qualifiers that would put them at moderate risk.

These risk categories are compatible with the joint European Atherosclerosis Society/ESC lipid guidelines. The joint guidelines offer further advice on lipid intervention based on these risk categories.

Recommendation: targets:

LDL cholesterol is recommended as the primary lipid analysis for screening and risk estimation as well as target for treatment.

HDL cholesterol is also a strong risk factor and is recommended to be used for risk estimation, but is not recommended as a target for treatment.

The recommended target levels are <5 mmol/L (less than ~190 mg/dL) for total plasma cholesterol and <3 mmol/L (less than ~115 mg/dL) for LDL cholesterol for subjects at low or moderate risk. (Class I, level A)

In patients at high CVD risk, an LDL cholesterol goal <2.5 mmol/L (less than ~100 mg/dL) is recommended. (Class I, level A)

In patients at very high CVD risk, the recommended LDL cholesterol target is <1.8 mmol/L (less than 70 mg/dL) or a \geq 50% LDL cholesterol reduction when the target level cannot be reached. (Class I, level A)

Recommendations: treatment:

Intervention strategies:

Total CV risk (SCORE)	LDL-C lvels							
(SCORE) %	<70 mg/dL <1.8 mmol/L	70 to <100 mg/dL 1.8 to <2.5 mmol/L	100 to <155 mg/dL 2.5 to <4.0 mmol/L	155 to <190 mg/dL 4.0 to <4.9 mmol/L	>190 mg/dL >4.9 mmol/L			
<	No lipid intervention	No lipid intervention	Lifestyle intervention	Lifestyle intervention	Lifestyle intervention consider drug if uncontrolled			
Class ^a /Level ^b	I/C	I/C	I/C	I/C	IIa/A			
≥l to <5	Lifestyle intervention	Lifestyle intervention	Lifestyle intervention, consider drug if uncontrolled	Lifestyle intervention, consider drug if uncontrolled	Lifestyle interventior consider drug if uncontrolled			
Class ^a /Level ^b	I/C	I/C	IIa/A	IIa/A	I/A			
>5 to <10, or high risk	Lifestyle intervention, consider drug	Lifestyle intervention, consider drug	Lifestyle intervention and immediate drug intervention	Lifestyle intervention and immediate drug intervention	Lifestyle intervention and immediate drug intervention			
Classª/Level ^b	IIa/A	IIa/A	IIa/A	I/A	I/A			
≥10 or very high risk	Lifestyle intervention, consider drug*	Lifestyle intervention and immediate drug intervention	Lifestyle intervention and immediate drug intervention	Lifestyle intervention and immediate drug intervention	Lifestyle interventior and immediate drug intervention			
Class ^a /Level ^b	Ila/A	lla/A	I/A	I/A	I/A			

Reference table.42

CV = cardiovascular; LDL = low-density lipoprotein. ^aClass of recommendation.

^bLevel of evidence.

In patients with an acute coronary syndrome, statin treatment in high doses has to be initiated while the patients are in hospital.

(Class I, level A)

Prevention of non-haemorrhagic stroke: treatment with statins must be started in all patients with established atherosclerotic disease and in patients at high risk for developing CVD. Treatment with statins must be started in patients with a history of non-cardioembolic ischaemic stroke. (Class I, level A)

Occlusive arterial disease of the lower limbs and carotid artery disease are CHD risk-equivalent conditions and lipid-lowering therapy is recommended. (Class I, level A)

Drug treatment:

<u>Statin treatment</u>

Statins, by decreasing LDL cholesterol, reduce cardiovascular morbidity and mortality as well as the need for coronary artery interventions. Statins at doses that effectively reduce LDL cholesterol by 50% also seem to halt progression or even contribute to regression of coronary atherosclerosis. Therefore, they should be used as the drugs of first choice in patients with hypercholesterolaemia or combined hyperlipidaemia.

<u>Non-statin treatment</u>

Selective cholesterol absorption inhibitors are not used as monotherapy to decrease LDL cholesterol concentrations.

Bile acid sequestrants also decrease total and LDL cholesterol but tend to increase triglyceride concentrations.

Fibrates and niacin are used primarily for triglyceride lowering and increasing HDL cholesterol, while *fish oils* (omega-3 fatty acids) in doses of 2–4 g/day are used for triglyceride lowering. When triglycerides exceed 10 mmol/L (900 mg/dL), in order to prevent pancreatitis triglycerides must be reduced not only by drugs but also by restriction of alcohol, treatment of diabetes with insulin, withdrawal of oestrogen therapy, etc. In the rare patients with severe primary hypertriglyceridaemia, it is necessary to restrict absolutely the intake of alcohol and severely restrict long-chain fat of both animal and vegetable origin. Fibrates are the drugs of choice for these patients, and prescription omega-3 fatty acids might be added if elevated triglycerides are not decreased adequately.

Drug combinations

Patients with dyslipidaemia, particularly those with established CVD, diabetes, or asymptomatic high-risk individuals, may not always reach treatment targets. Therefore, combination treatment may be needed.

Combinations of a statin and a bile acid sequestrant or a combination of a statin and ezetimibe can be used for greater reduction of LDL cholesterol than can be achieved with either drug alone. Another advantage of combination therapy is that lower doses of statins can be used, thus diminishing the risk of adverse effects associated with high doses. However, statins should be used in the highest tolerable doses to reach the LDL cholesterol target level before combination therapy. *Combinations of niacin and a statin* increase HDL cholesterol and decrease triglycerides better than either of these drugs alone, but flushing is the main adverse effect of niacin, which may affect compliance. Adding laropiprant to niacin might help in reducing the incidence of this adverse effect. *Fibrates*, particularly fenofibrate, may be useful, not only for decreasing high triglyceride concentrations and increasing low HDL cholesterol, but can further lower LDL cholesterol when applied *together with a statin*.

If target levels cannot be reached even on maximal doses of lipid-lowering therapy or drug combinations, patients will still benefit from treatment to the extent to which dyslipidaemia has been improved. In these patients, increased attention to other risk factors may help to reduce total risk.

Lifestyle

Established cognitive-behavioural strategies (e.g. motivational interviewing) to facilitate lifestyle change are recommended.

(Class I, level A)

In individuals at very high CVD risk, multimodal interventions, integrating education on healthy lifestyle and medical resources, exercise training, stress management, and counseling on psychosocial risk factors, are recommended. (Class I, Level A)

All smokers should be given advice to quit and be offered assistance (Class I, Level A)

A healthy diet is recommended as being the cornerstone of CVD prevention. (Class I, Level)

• Saturated fatty acids to account for <10% of total energy intake, through replacement by polyunsaturated fatty acids.

 Trans-unsaturated fatty acids: as little as possible, preferably no intake from processed food, and <1% of total energy intake from natural origin.

<5 g of salt per day.

• 30–45 g of fibre per day, from wholegrain products, fruits, and vegetables.

• 200 g of fruit per day (2-3 servings).

• 200 g of vegetables per day (2–3 servings).

• Fish at least twice a week, one of which to be oily fish.

 Consumption of alcoholic beverages should be limited to two glasses per day (20 g/day of alcohol) for men and one glass per day (10 g/day of alcohol) for women.

Healthy adults of all ages should spend 2.5–5 h a week on physical activity or aerobic exercise training of at least moderate intensity, or 1–2.5 h a week on vigorous intense exercise. Sedentary subjects should be strongly encouraged to start light-intensity exercise programmes. **(Class I, Level A)**

Physical activity/aerobic exercise training should be performed in multiple bouts each lasting \geq 10 min and evenly spread throughout the week, i.e. on 4–5 days a week (Class IIa, Level A)

Patients with previous acute myocardial infarction, CABG, PCI, stable angina pectoris, or stable chronic heart failure should undergo moderate-to-vigorous intensity aerobic exercise training ≥3 times a week and 30 min per session. Sedentary patients should be strongly encouraged to start light-intensity exercise programmes after adequate exercise-related risk stratification. (Class I, Level A)

Multimodal behavioural interventions, integrating health education, physical exercise, and psychological therapy for psychosocial risk factors and coping with illness, should be prescribed. (Class I, Level A)

In the case of clinically significant symptoms of depression, anxiety, and hostility, psychotherapy, medication, or collaborative care should be considered. This approach can reduce mood symptoms and enhance health-related quality of life, although evidence for a definite beneficial effect on cardiac endpoints is inconclusive.

(Class IIa, Level A)

Weight reduction in overweight and obese people is recommended as this is associated with favourable effects on blood pressure and dyslipidaemia, which may lead to less CVD. (Class I, Level A)

Elevated blood pressure (BP) is a major risk factor for CHD, heart failure, cerebrovascular disease, PAD, renal failure, and atrial fibrillation.

Individuals with an elevated BP more commonly have other risk factors for CVD (diabetes, insulin resistance, dyslipidaemia) and target organ damage. Because risk factors may interact, the overall risk of hypertensive patients is increased although the BP elevation is only mild or moderate.

All hypertensive patients with established cardiovascular disease, or with type 2 diabetes, or with an estimated 10-year risk of cardiovascular death \geq 5% (based on the SCORE chart) should be considered for statin therapy.

(Class IIa, Level B)

Recommendations: specific subpopulations:

Elderly

Women and older people should be included in CVD risk assessments in the same way as other groups to determine need for specific treatments. (Class I, level B)

Chronic kidney disease:

Recommendation:

In patients with chronic kidney disease, risk factors have to be attended to in the same way as for very high risk persons.

(Class I, level B)

Hypertension, dyslipidaemia, and diabetes mellitus are common among patients with CKD. They are major risk factors for the development and progression of endothelial dysfunction and atherosclerosis, and contribute to the progression of renal failure—yet these patients tend to be less intensely treated than patients with normal renal function. Inflammatory mediators and promoters of calcification are increased and inhibitors of calcification are reduced in CKD, which favours vascular calcification and vascular injury. Microalbuminuria increases cardiovascular risk two- to four-fold. A decreasing GFR is an indicator of increased risk for CVD and all-cause mortality. There is a quantitative association between decreased GFR and cardiovascular risk: patients with moderately decreased renal function (stage 3, GFR 30–59 mL/min/1.73 m2) have a two- to four-fold increased risk in comparison with persons free of CKD.

Lipid lowering appears useful in a wide range of patients with advanced CKD but with no known history of myocardial infarction or coronary revascularization: a reduction of low-density lipoprotein (LDL) cholesterol by 0.85 mmol/L (33 mg/dL) with daily 20 mg simvastatin plus 10 mg ezetimibe reduced the incidence of major events: non-fatal myocardial infarction, coronary death, non-haemorrhagic stroke, or any arterial revascularization procedure.

Chronic kidney disease is characterized by mixed dyslipidaemia (high triglycerides, high LDL cholesterol, and low HDL cholesterol). Microalbuminuria is a risk factor for CVD, which rises progressively from a normal GFR to end-stage renal disease. CKD (stages 2–5, i.e. GFR ,90

mL/min/1.73 m2) is acknowledged as a CHD risk-equivalent, and the LDL cholesterol target in these patients has been adapted to the degree of renal failure (see page 1653). The statin dose should be modified according to GFR. Statin therapy has a beneficial effect on CVD outcomes in CKD stages 2 and 3 and slows the rate of kidney function loss.

CHD risk-equivalent and the LDL cholesterol target in these patients should be adapted to the degree of renal failure. (Class IIa, level C)

Diabetes mellitus type 2:

The target HbA1c for the prevention of CVD in diabetes of <7.0% (<53 mmol/mol) is recommended. (Class I, level A)

Statins are recommended to reduce cardiovascular risk in diabetes. (Class I, level A)

Hypoglycaemia and excessive weight gain must be avoided and individual approaches (both targets and drug choices) may be necessary in patients with complex disease. **(Class I, level B)**

Metformin should be used as first-line therapy if tolerated and not contraindicated. (Class IIa, level B)

Further reductions in HbA1c to a target of <6.5% (<48 mmol/mol) (the lowest possible safely reached HbA1c) may be useful at diagnosis. For patients with a long duration of diabetes this target may reduce risk of microvascular outcomes.

(Class IIb, level B)

BP targets in diabetes are recommend to be <140/80 mmHg. (Class I, level A)

Target LDL cholesterol is <2.5 mmol/L, for patients without atherosclerotic disease total cholesterol may be <4.5 mmol/L, with a lower LDL cholesterol target of <1.8 mmol/L (using higher doses of statins) for diabetic patients at very high CVD risk. (Class IIb, level B)

Antiplatelet therapy with aspirin is not recommended for people with diabetes who do not have clinical evidence of atherosclerotic disease. **(Class III, level A)**

Recommendations: adverse effects, monitoring:

Statins

Higher activity of liver enzymes in plasma occurs occasionally, and in most cases is reversible: 5– 10% of patients receiving statins develop myopathy, but rhabdomyolysis is extremely rare. The risk of myopathy can be minimized by identifying vulnerable patients and/or by avoiding statin interactions with specific drugs. Because statins are prescribed on a long-term basis, possible interactions with other drugs deserve particular and continuous attention, as many patients will receive pharmacological therapy for concomitant conditions. In general, the safety profile of statins is acceptable, and earlier observations that lipid-lowering treatment may contribute an increase in non-cardiovascular mortality (e.g. cancers, suicides, depression) or mental disorders have not been confirmed. There are reports indicating increased blood sugar and HbA1c levels, i.e. increased risk of type 2 diabetes, as a possible adverse effect of long-term statin therapy, but the benefits of statins far outweigh the risks for the vast majority of patients.

Fibrates plus statin

Other drugs metabolized through cytochrome P450 should be avoided when this combination is prescribed. Fibrates should preferably be taken in the morning and statins in the evening to minimize peak dose concentrations and decrease the risk of myopathy. Patients have to be instructed about warning symptoms (myalgia) even though these adverse effects are very rare.

Recommendations: adherence, programmes:

Physicians must assess adherence to medication, and identify reasons for nonadherence in order to tailor further interventions to the individual needs of the patient or person at risk. (Class I, Level A)

In clinical practice, reducing dosage demands to the lowest acceptable level is recommended. In addition, repetitive monitoring and feedback should be implemented. If feasible, multisession or combined behavioural interventions should be offered in the case of persistent non-adherence. **(Class IIa, Level A)**

Table 19Recommendations for promotingmedication adherence

- Provide clear advice regarding the benefits and possible adverse effects of the medication, and the duration and timing of dosing.
- Consider patients' habits and preferences.
- Reduce dosage demands to the lowest feasible level.
- Ask patients in a non-judgemental way how the medication works for them, and discuss possible reasons for non-adherence (e.g. side effects, worries).
- Implement repetitive monitoring and feedback.
- In the case of lack of time, introduce physicians assistants and/or trained nurses whenever its necessary and feasible.
- In the case of persistent non-adherence, offer multisession or combined behavioural interventions.

Actions to prevent cardiovascular disease should be incorporated into everyone's daily lives, starting in early childhood and continuing throughout adulthood and senescence. **(Class IIa, Level B)**

Nurse-co-ordinated prevention programmes should be well integrated into healthcare systems. (Class IIa, Level B)

Patients with cardiac disease may participate in self-help programmes to increase or maintain awareness of the need for risk factor management, for maintaining physical fitness, or for diligent self-management of oral anticoagulation.

(Class IIa, Level B)

All patients with cardiovascular disease must be discharged from hospital with clear guideline orientated treatment recommendations to minimize adverse events. (Class I, Level B)

All patients requiring hospitalization or invasive intervention after an acute ischaemic event should participate in a cardiac rehabilitation programme to improve prognosis by modifying lifestyle habits and increasing treatment adherence.

(Class IIa, Level B)

3.3.2.2 NICE 2010

NICE 2010 offers guidelines on the *population-based* prevention of cardiovascular disease for public health policy and the development of a national framework of action.

Levels of evidence:

Included papers were assessed for methodological rigour and quality using the NICE methodology checklist, as set out in the NICE technical manual 'Methods for the development of NICE public health guidance'. Each study was graded (++, +, -) to reflect the risk of potential bias arising from its design and execution.

Study quality

++: All or most of the checklist criteria have been fulfilled. Where they have not been fulfilled, the conclusions are very unlikely to alter.

+: Some of the checklist criteria have been fulfilled. Those criteria that have not been fulfilled or not adequately described are unlikely to alter the conclusions.

-: Few or no checklist criteria have been fulfilled. The conclusions of the study are likely or very likely to alter.

Grades of recommendation:

Interventions that <u>must</u> be used: when the recommendation links to enforceable legislation (such as health and safety regulations). It can also be used if the committee believes there will be serious repercussions if the recommendation is not followed.

Interventions that <u>should</u> be used: the intervention will do more good than harm and is likely to be cost effective.

Interventions that <u>could</u> be used: the intervention is effective and/or cost effective, but other options may be similarly effective and/or cost effective. Or the choice of intervention (or the decision whether to have one at all) is likely to vary depending on the client's values and preferences.

Interventions that <u>should not</u> be used: a particular action should not be carried out or should be stopped (because it is ineffective or not cost effective, or harmful).

Included populations, interventions, outcomes:

- Entire population
- Lifestyle modification (smoking cessation, diet, exercise, weight reduction,...)
- Cardiovascular risk

Members of development group, target population:

- The development group is multidisciplinary, comprising public health practitioners, clinicians (both specialists and generalists), local authority officers, teachers, social care professionals, representatives of the public, patients, carers, academics and technical experts.
- The guidance is for government, the NHS, local authorities, industry and all those whose actions influence the population's cardiovascular health .

Recommendations: risk assessment:

CVD risk factors:

Lifetime risk of CVD is strongly influenced by diet and physical activity levels since childhood (National Heart Forum 2003). The risk among adults is determined by a variety of 'upstream' factors (such as food production and availability, access to a safe environment that encourages physical activity and access to education). It is also influenced by 'downstream' behavioural issues (such as diet and smoking).

Potentially modifiable risk factors:

- smoking/tobacco use
- poor diet
- high blood cholesterol
- high blood pressure
- insufficient physical activity
- overweight/obesity
- diabetes
- psychosocial stress (linked to people's ability to influence the potentially stressful environments in which they live)
- excess alcohol consumption

Many of the risk factors that the guideline developers considered are also associated with other health-related conditions including some common cancers, chronic respiratory disease, obesity, diabetes, kidney disease and mental wellbeing.

The strategies discussed in this guidance are likely to help prevent some of these other health conditions. (Certainly, they are not likely to increase the risk of any common chronic diseases.) However, it was not possible to consider each of these other health conditions in detail.

Recommendations: lifestyle:

Salt: Accelerate the reduction in salt intake among the population. Aim for a maximum intake of 6 g per day per adult by 2015 and 3 g by 2025.

Satured fats: Reducing general consumption of saturated fat is crucial to preventing CVD. Reduce population intake of saturated fat from 13.3% to below 11% of food energy.

Trans fats: Ensure all groups in the population are protected from the harmful effects of IPTFAs. Industrially-produced trans fatty acids (IPTFAs)

Ensure all food procured by, and provided for, people working in the public sector and all food provided for people who use public services: is low in salt and saturated fats is nutritionally balanced and varied, in line with recommendations made in the 'eatwell plate' does not contain industrially produced trans fatty acids (IPTFAs).

Promote physical activity.

3.3.2.3 ACC AHA 2013 (cvr)

Grades of recommendation:

Grades of recommendation (see tables 2 and 3 in original document):

1) **Grade A:** strong recommendation: there is high certainty based on evidence that the net benefit is substantial.

2) Grade B: moderate recommendation: there is moderate certainty based on evidence that the net benefit is moderate to substantial, or there is a high certainty that the net benefit is moderate.

3) **Grade C**: weak recommendation: there is at least moderate certainty based on evidence that there is a small net benefit.

4) Grade D: recommendation against: there is at least moderate certainty based on evidence that it has no net benefit or that risks/harms outweigh benefits.

5) Grade E: Expert opinion ("There is insufficient evidence or evidence is unclear or conflicting, but this is what the Work Group recommends."): Net benefit is unclear. Balance of benefits and harms cannot be determined because of no evidence, insufficient evidence, unclear evidence, or conflicting evidence, but the Work Group thought it was important to provide clinical guidance and make a recommendation. Further research is recommended in this area.

6) Grade N: No recommendation for or against ("There is insufficient evidence or evidence is unclear or conflicting."): Net benefit is unclear. Balance of benefits and harms cannot be determined because of no

evidence, insufficient evidence, unclear evidence, or conflicting evidence, and the Work Group thought no recommendation should be made. Further research is recommended in this area.

Levels of evidence:

1) High:

Well-designed, well-executed RCTs that adequately represent populations to which the results are applied and directly assess effects on health outcomes. MAs of such studies.

Highly certain about the estimate of effect. Further research is unlikely to change our confidence in the estimate of effect

2) Moderate:

RCTs with minor limitations affecting confidence in, or applicability of, the results. Well-designed, well-executed nonrandomized controlled studies and well-designed, well-executed observational studies. MAs of such studies.

Moderately certain about the estimate of effect. Further research may have an impact on our confidence in the estimate of effect and may change the estimate

3) Low:

RCTs with major limitations. Nonrandomized controlled studies and observational studies with major limitations affecting confidence in, or applicability of, the results. Uncontrolled clinical observations without an appropriate comparison group (e.g., case series, case reports). Physiological studies in humans. MAs of such studies.

Low certainty about the estimate of effect. Further research is likely to have an impact on our confidence in the estimate of effect and is likely to change the estimate

Included patients, interventions, outcomes:

- Non-Hispanic African-American and non-Hispanic White men and women from 40 to 79 years of age.

Members of development group, target population:

- Internists, cardiologists, endocrinologists, experts in CV epidemiology, biostatistics, healthcare management and economics and guideline development
- Adult population without clinical signs or symptoms of ASCVD, who merit evaluation for the primary prevention of ASCVD (atherosclerotic cardiovascular disease).

Recommendations:

Recommendations for Assessment of 10-Year Risk for a First Hard ASCVD Event

The race- and sex-specific <u>Pooled Cohort Equations</u> to predict 10-year risk for a first hard ASCVD* event should be used in nonHispanic African Americans and nonHispanic Whites, 40 to 79 years of age.

(Grade B)

Use of the sex-specific Pooled Cohort Equations for nonHispanic Whites may be considered when estimating risk in patients from populations other than African Americans and nonHispanic Whites. **(Grade E)**

<u>Rem:</u> a downloadable spreadsheet enabling estimation of 10-year and lifetime risk for ASCVD and a web-based calculator are available at http://my.americanheart.org/cvriskcalculator and http://www.cardiosource.org/scienceand-quality/practice-guidelines-and-quality-standards/2013-prevention-guideline-tools.aspx.

<u>Rem</u>: *Ten-year risk was defined as the risk of developing a first ASCVD event, defined as nonfatal myocardial infarction or CHD death, or fatal or nonfatal stroke, over a 10-year period among people free from ASCVD at the beginning of the period.

Recommendations for CQ1: Use of Newer Risk Markers After Quantitative Risk Assessment

If, after quantitative risk assessment, a risk-based treatment decision is uncertain, assessment of 1 or more of the following—family history, hs-CRP, CAC score, or ABI—may be considered to inform treatment decision making.

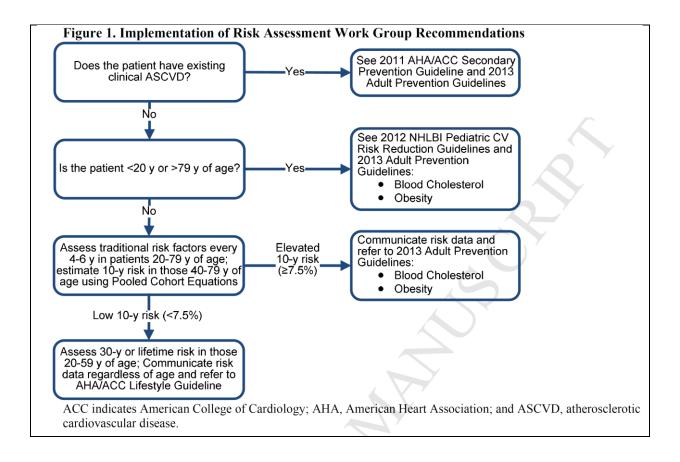
(Grade E)

CIMT is not recommended for routine measurement in clinical practice for risk assessment for a first ASCVD event.

(Grade N)

The contribution to risk assessment for a first ASCVD event using ApoB, chronic kidney disease, albuminuria, or cardiorespiratory fitness is uncertain at present. **(Grade N)**

Recommendations for CQ2: Long-Term Risk Assessment


It is reasonable to assess traditional ASCVD risk factors every 4 to 6 years in adults 20 to 79 year of age who are free from ASCVD and estimate 10-year ASCVD risk every 4 to 6 years in adults 40 to 79 years of age who are free from ASCVD.

(Grade B)

Assessing 30-year or lifetime ASCVD risk based on traditional risk factors⁺ may be considered in adults 20 to 59 years of age who are free from ASCVD and who are not at high short-term risk.

(Grade C)

Rem: traditional risk factors: age, sex, total and HDL–cholesterol, systolic BP, use of antihypertensive therapy, diabetes, and current smoking

3.3.2.4 Domus Medica 2007

This guideline does not fulfill inclusion criteria (>5y), but is added and discussed here because it is the only full Belgian guideline and differs in some areas from the other guidelines that are discussed here.

Grades of recommendation/ Levels of evidence (niveaus van bewijskracht):

Niveau 1

Voor niveau 1 is de voorwaarde dat er ten minste twee onafhankelijk van elkaar uitgevoerde onderzoeken met gelijklopende resultaten bestaan die behoren tot één van de volgende types: een RCT van goede kwaliteit, een onafhankelijk blinde vergelijking van een diagnostische test met de referentietest van goede kwaliteit (dit wil zeggen bij een doelgroep van opeenvolgende patiënten die zowel de diagnostische als de referentietest hebben ondergaan), een prospectief cohortonderzoek van goede kwaliteit met een follow-up van 80% of meer.

Voor dit niveau van bewijskracht is een systematische review of een meta-analyse van dit soort artikels met een hoge consistentiegraad tevens voldoende.

Als besluit van dergelijke studies stellen we 'dat het aangetoond is dat \ldots^\prime

Niveau 2

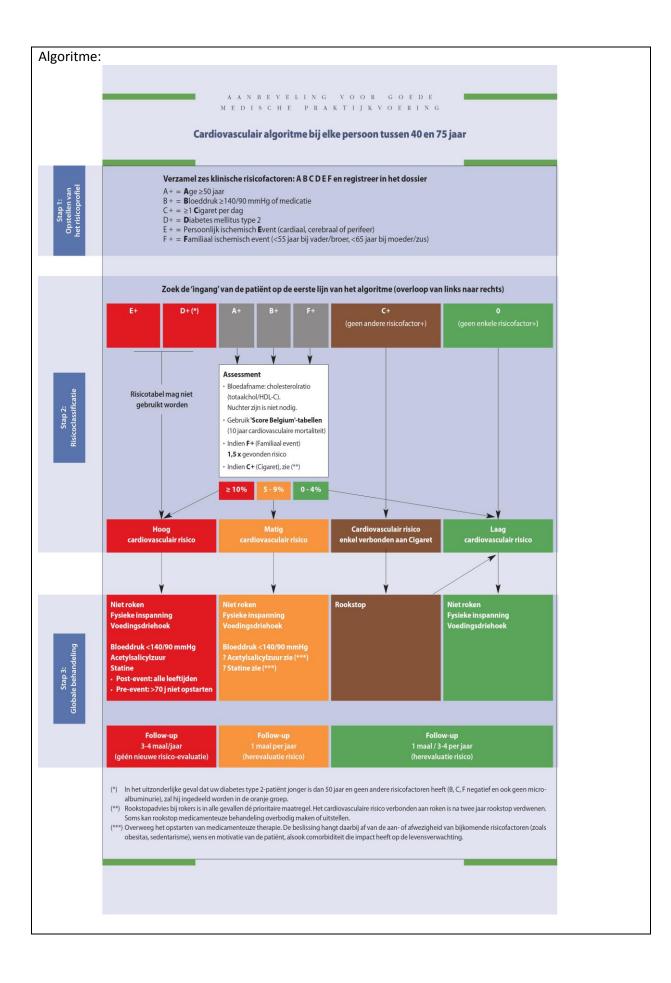
Voor niveau 2 is de voorwaarde dat er ten minste twee onafhankelijk van elkaar uitgevoerde onderzoeken met gelijklopende resultaten bestaan die behoren tot één van de volgende types: een RCT van matige kwaliteit, een onafhankelijk blinde vergelijking van een diagnostische test met de referentietest van matige kwaliteit (dit wil zeggen bij een beperkt deel van de doelgroep of wanneer de referentietest niet bij iedereen werd uitgevoerd), een (retrospectief) cohortonderzoek van matige kwaliteit of patiëntcontroleonderzoek.

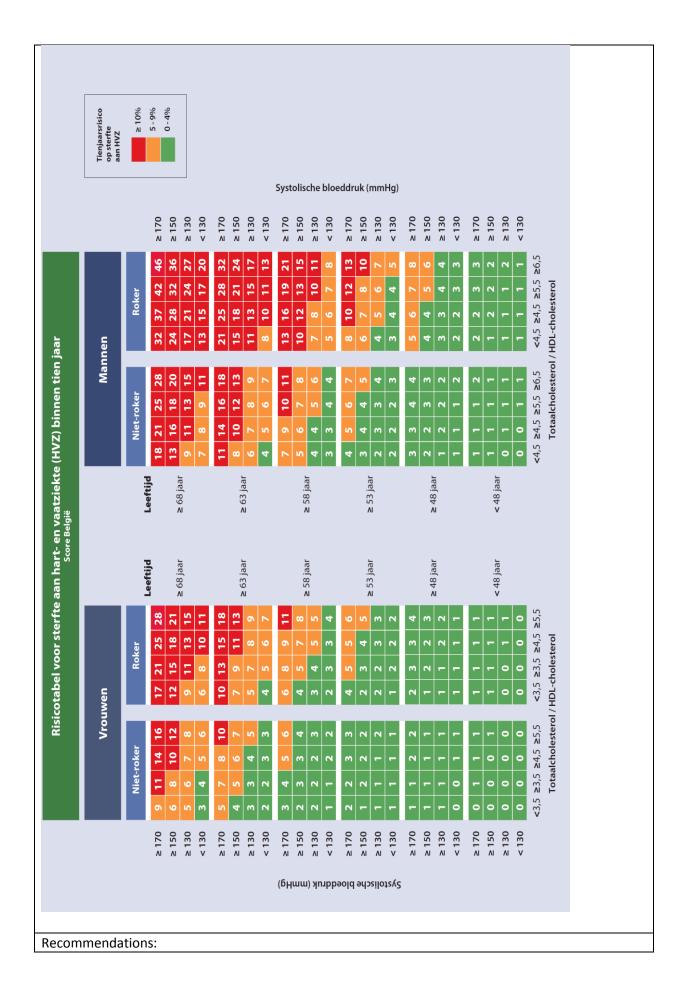
Voor dit niveau van bewijskracht is een systematische review of meta-analyse van dit soort artikels met een hoge consistentiegraad voldoende. Indien er één onderzoek van de onder niveau 1 vermelde types beschikbaar is, spreken we van niveau 2.

Als besluit van dergelijke studie stellen we 'dat het aannemelijk is dat ...'

Niveau 3

Ontbreekt er vergelijkend onderzoek van goede kwaliteit, dan spreken we van het derde niveau van bewijskracht:


er zijn geen RCT's van goede kwaliteit, er bestaat slechts één onderzoek van matige kwaliteit en er zijn geen meta-analyses van onderzoeken met matige kwaliteit voorhanden, de uitkomsten van RCT's of meta-analyses zijn tegenstrijdig.


Tot dit niveau behoren ook de consistente mening van ten minste twee deskundigen, een aanbeveling of conclusie bekomen na het bekijken van alle beschikbaar materiaal en een consensus binnen de auteursgroep.

In al deze gevallen spreken we enkel van 'een aanwijzing dat ...'of 'dat de werkgroep van mening is dat ...'

Included populations, interventions, outcomes:

- Interventions: dietary interventions, statins in primary prevention

Recommendation: Screening: bij alle patiënten tussen 40 en 75 jaar die de huisarts consulteren, zal bij gelegenheid het cardiovasculaire risicoprofiel opgesteld worden door het inventariseren van de risicofactoren.(niveau 3)

Recommendation: De risicobepaling kan gebeuren op basis van de Score-risicotabellen, aangepast aan de Belgische populatie (niveau 2)

Recommendation: De opsporing en risicoclassificatie kunnen ook gebeuren aan de hand van een nieuw stappenplan dat een combinatie is van een klinisch algoritme (Boland et al. 2004) met de Score Belgium-risicotabellen. Dit vergemakkelijkt de implementatie van een globaal cardiovasculair risicobeheer in de huisartsenpraktijk. (niveau 2)

- <u>Eerste stap: screening van zes klinische risicofactoren (ABCDEF*) bij personen tussen 40 en</u> <u>75 jaar</u> (niveau 2)
- Tweede stap: risicoclassificatie
 - Patiënten met een persoonlijke cardiovasculaire voorgeschiedenis lopen een hoog risico op een nieuw incident (E+ in het algoritme).
 - Patiënten met diabetes mellitus type 2 met nog één bijkomende risicofactor (ouder dan 50 jaar, hoge bloeddruk, hart- en vaatziekten in voorgeschiedenis, familiale anamnese van hart- en vaatziekten én microalbuminurie) lopen eveneens een hoog risico op een eerste ischemisch incident (D+ in het algoritme).
 - Patiënten zonder risicofactoren (bij wie geen enkele van de bovengenoemde klinische risicofactoren aanwezig is) hebben een laag cardiovasculair risico, ook al zijn hun cholesterolwaarden niet gekend.
 - Rokers zonder andere risicofactoren (bij wie geen enkele van de bovengenoemde klinische risicofactoren aanwezig is) zullen een laag risico bereiken na één tot twee jaar rookstop.
 - Elk ander risicoprofiel is onbepaald en vereist een bloedafname met lipidenprofiel om tot een risicobepaling te komen met de Score Belgium-risicotabellen gebaseerd op de cholesterolratio (totaalcholesterol/HDL-cholesterol).
 - Het risico is hoog indien de kans op het doormaken van een fataal cardiovasculair incident binnen 10 jaar >= is aan 10%.
 - Het risico is matig indien de kans op het doormaken van een fataal cardiovasculair incident binnen 10 jaar tussen 5 en 9% ligt.
 - Het risico is laag indien de kans op het doormaken van een fataal cardiovasculair incident binnen 10 jaar tussen 0 en 4% ligt.
- Derde stap: risicoreductie door behandeling

De hoogte van het individuele absolute risico op hart- en vaatziekten bepaalt het te volgen beleid (niveau 3).

Recommendation: *Hoogrisicopatiënten* (incident in de voorgeschiedenis, diabetes type 2 of volgens Scoretabel >=10%) moeten intensief begeleid worden om een gezonde leefstijl aan te nemen (niveau 3)

- <u>Niet roken</u> (niveau 2)
- <u>Regelmatige lichamelijke activiteit:</u> (niveau 2)
 - o minstens 5 keer per week matige fysieke activiteit gedurende 30 minuten,
 - o personen die hiervoor te weinig tijd hebben, kunnen hun activiteit opbouwen via

meerdere korte oefensessies van 8 tot 10 minuten (niveau 2)

- voor patiënten met een cardiovasculaire voorgeschiedenis wordt eerst het advies van een cardioloog gevraagd vooraleer ze met intensieve fysieke training starten (niveau 3)
- fysieke oefening bij personen met coronair lijden moet beginnen aan lage intensiteit en geleidelijk toenemen, gespreid over verschillende weken (niveau 3)
- <u>Gezonde gevarieerde voeding</u> waarbij de voedingsdriehoek als voedingsvoorlichtingsmodel gebruikt kan worden (niveau 3)
- <u>BMI <=25 kg/m behouden</u> of 10% gewichtsverlies bij obesitas (niveau 3)

Recommendation: Elke *hoogrisicopatiënt* (incident in voorgeschiedenis, diabetes type 2 of volgens Scoretabel >=10%) moet volgende medicamenteuze behandeling krijgen:

- <u>Acetylsalicylzuur</u> : 75 mg tot 150 mg per dag (behalve indien tegenaangewezen) (niveau 1)
- <u>Statine</u> (niveau 1)
 - eerste keuze: simvastatine of pravastatine 40 mg (niveau 3)
 - streefwaarde totaalcholesterol <190 mg/dl en LDL-C<115 mg/dl (niveau 3)
- <u>Indien ook hypertensie</u>: strikte tensieregeling Bloeddruk <140/90 mmHg (niveau 1):
 - eerste stap: thiazidediureticum (chlortalidone 25 mg),
 - tweede stap: ACE-I, bètablokker (niet atenolol) of calciumantagonist.
- <u>Indien diabetes</u>: nog striktere tensieregeling bloeddruk<130/80 mmHg, bij microalbuminurie zeker mét ACE-I (niveau 3)
- <u>Indien postinfarctpatiënten</u>: bètalyticum (metoprolol 200 mg , propranolol 160 mg of timolol 20 mg), te overwegen ACEI (perindopril 8 mg of ramipril 10 mg).

Recommendation: Patiënten met een *matig* risico (Score 5-9%) worden begeleid om een gezonde leefstijl aan te nemen zoals de hoogrisicopatiënten (niveau 3)

Overweeg bij deze patiënten een medicamenteuze therapie als bijkomende risicofactoren zoals (abdominale) obesitas of sedentarisme aanwezig zijn. Houd rekening met de wens en de motivatie van de patiënt alsook met de comorbiditeit die een impact heeft op de levensverwachting.

- <u>Acetylsalicylzuur</u> (niveau 3)
- <u>Statine</u> (simvastatine of pravastatine 40 mg) (niveau 2).
- <u>Normale bloeddruk</u> (<140/ 90 mmHg), met behulp van medicatie indien nodig (niveau 2)

Een nieuwe risicobepaling bij deze patiënten is zinvol na 1 jaar (niveau 3).

Recommendation: Patiënten met een *laag* risico (Score 0-4%): een gezonde leefstijl wordt aanbevolen (niveau 3).

Bij deze patiënten is een nieuwe risicobepaling na 3 tot 4 jaar zinvol (niveau 3).

Recommendation: Om veranderingen in gedrag te kunnen bewerkstelligen en consolideren moet worden rekening gehouden met de motivatie van de patiënt om te veranderen ('stages of change'-model van Prochaska en Di Clemente). Om een patiënt te motiveren tot gedragsverandering is het 'motivationele interview' een goede manier **(niveau 3).**

Recommendation: Als therapie aangewezen is, wordt een individueel behandelplan opgesteld waarbij wordt rekening gehouden met bepaalde medische prioriteiten (rookstop, gezonde voeding, lichaamsbeweging, acetylsalicylzuur, statine) en de wens van de patiënt.

In vervolgconsulten wordt nagegaan of de streefdoelen worden bereikt en zo nodig wordt het beleid bijgestuurd (niveau 3).

3.3.3 Lifestyle Management

3.3.3.1 ACC AHA 2013 Lifestyle management

Grades of recommendation:

1) **Grade A**: strong recommendation: there is high certainty based on evidence that the net benefit is substantial.

2) **Grade B**: moderate recommendation: there is moderate certainty based on evidence that the net benefit is moderate to substantial, or there is a high certainty that the net benefit is moderate.

3) **Grade C**: weak recommendation: there is at least moderate certainty based on evidence that there is a small net benefit.

4) **Grade D**: recommendation against: there is at least moderate certainty based on evidence that it has no net benefit or that risks/harms outweigh benefits.

5) **Grade E**: Expert opinion ("There is insufficient evidence or evidence is unclear or conflicting, but this is what the Work Group recommends."): Net benefit is unclear. Balance of benefits and harms cannot be determined because of no evidence, insufficient evidence, unclear evidence, or

conflicting evidence, but the Work Group thought it was important to provide clinical guidance and make a recommendation. Further research is recommended in this area.

6) **Grade N**: No recommendation for or against ("There is insufficient evidence or evidence is unclear or conflicting."): Net benefit is unclear. Balance of benefits and harms cannot be determined because of no evidence, insufficient evidence, unclear evidence, or conflicting evidence, and the Work Group thought no recommendation should be made. Further research is recommended in this area.

Levels of evidence:

1) High:

Well-designed, well-executed RCTs that adequately represent populations to which the results are applied and directly assess effects on health outcomes. MAs of such studies.

Highly certain about the estimate of effect. Further research is unlikely to change our confidence in the estimate of effect

2) Moderate:

RCTs with minor limitations affecting confidence in, or applicability of, the results. Well-designed, well-executed nonrandomized controlled studies and well-designed, well-executed observational studies. MAs of such studies.

Moderately certain about the estimate of effect. Further research may have an impact on our confidence in the estimate of effect and may change the estimate

3) Low:

RCTs with major limitations. Nonrandomized controlled studies and observational studies with major limitations affecting confidence in, or applicability of, the results. Uncontrolled clinical observations without an appropriate comparison group (e.g., case series, case reports). Physiological studies in humans. MAs of such studies.

Low certainty about the estimate of effect. Further research is likely to have an impact on our confidence in the estimate of effect and is likely to change the estimate

Included populations, interventions, outcomes:

- Populations: adults \geq 18 years of age and <80 years of age.

- Interventions: particular dietary patterns, nutrient intake, and levels and types of physical activity

- Outcomes: CVD prevention and treatment through effects on modifiable CVD risk factors (i.e., blood pressure [BP] and lipids).

Members of development group, target population:

Physicians and experts in BP, blood cholesterol, obesity, and lifestyle management; from primary care, nursing, pharmacology, nutrition, exercise, behavioral science, and epidemiology disciplines and senior scientific staff from NHLBI and the National Institutes of

Health.

- adults (≥18 years) with or without established coronary heart disease (CHD)/CVD, with or without CHD/CVD risk factors, and who were of normal weight, overweight, or obese.

Recommendations: Dietary Patterns and Macronutrients: BP and Lipids

Advise adults who would benefit from LDL–C lowering to:

• Consume a dietary pattern that emphasizes intake of vegetables, fruits, and whole grains; includes low-fat dairy products, poultry, fish, legumes, nontropical vegetable oils, and nuts; and limits intake of sweets, sugar-sweetened beverages, and red meats.

o Adapt this dietary pattern to appropriate calorie requirements, personal and cultural food preferences, and nutrition therapy for other medical conditions (including diabetes mellitus). o Achieve this pattern by following plans such as the DASH dietary pattern, the USDA Food Pattern, or the AHA Diet.

(Grade: A)

Advise adults who would benefit from LDL–C lowering to:

• Aim for a dietary pattern that achieves 5% to 6% of calories from saturated fat.

(Grade A)

Advise adults who would benefit from LDL–C lowering to:

• Reduce percent of calories from saturated fat.

(Grade A)

Advise adults who would benefit from LDL–C lowering to:

• Reduce percent of calories from trans fat.

(Grade A)

Recommendations: Sodium and Potassium: BP and CVD Outcomes

Advise adults who would benefit from BP lowering to:

a. Consume a dietary pattern that emphasizes intake of vegetables, fruits, and whole grains; includes low-fat dairy products, poultry, fish, legumes, nontropical vegetable oils, and nuts; and limits intake of sweets, sugar-sweetened beverages, and red meats.

i. Adapt this dietary pattern to appropriate calorie requirements, personal and cultural food preferences, and nutrition therapy for other medical conditions (including diabetes mellitus).

ii. Achieve this pattern by following plans such as the DASH dietary pattern, the USDA Food Pattern, or the AHA Diet.

(Grade A)

Advise adults who would benefit from BP lowering to:

a. Lower sodium intake

(Grade A)

Advise adults who would benefit from BP lowering to:

a. Consume no more than 2,400 mg/day of sodium;

b. Further reduction of sodium intake to 1,500 mg/day is desirable since it is associated with an even greater reduction in BP; and

c. Reduce sodium intake by at least 1,000 mg/day since that will lower BP, even if the desired daily sodium intake is not yet achieved.

(Grade B)

Advise adults who would benefit from BP lowering to: a. Combine the DASH dietary pattern with lower sodium intake. (Grade A)

Recommendations: Physical Activity: Lipids and BP

In general, advise adults to engage in aerobic physical activity to reduce LDL–C and non-HDL–C: 3 to 4 sessions a week, lasting on average 40 minutes per session, and involving moderate-tovigorous intensity physical activity.

(Grade B)

In general, advise adults to engage in aerobic physical activity to lower BP: 3 to 4 sessions a week, lasting on average 40 minutes per session, and involving moderate-to-vigorous intensity physical activity.

(Grade B)

3.4 Conclusions from guidelines

See Dutch and French summary reports for more details.

3.4.1 Assessment of cardiovascular risk and treatment

To assess the cardiovascular risk, each guidelines chooses a specific system, often adapted to te risk of the local population. We have for example SCORE in Europe (ESC 2011 and 2012), Framinghambased risk scores in English-speaking regions, and a new model proposed by thet ACC AHA 2013.

3.4.2 Pharmacological treatment

Statins are the first choice in all guidelines. Other lipid-lowering drus in monotherapy have a very limited place. Combination therapy is considered an option by most guidelines, but it is acknowledged that the evidence is limited.

3.4.3 Monitoring of adverse events

The guidelines are almost unanimous about the checking of liver enzymes before starting statin treatment, but they differ in the extent of follow up of these values.

Most guidelines recommend CK measurements before starting statin treatment only when there are risk factors for myopathy.

3.4.4 Elderly

Age is a non-modifiable risk factor for cardiovascular disease.

There is little data from studies in the elderly (>75 or >80years). According to the guidelines, elderly patients with an existing cardiovascular disease will benefit from statin therapy. In primary prevention, this is less certain. The advice is to consider all patient-related factors and to use one's clinical judgement.

3.4.5 Chronic renal insufficiency

Most guidelines mention chronic kidney disease as a risk factor for cardiovascular disease. Some guidelines automatically consider chronic kidney disease as 'high risk' for cardiovascular disease.

3.4.6 Type 2 diabetes

The cardiovascular risk of diabetics is considered high to very high. Targets for LDL-C or intensity of statin therapy depend on additional risk factors.

3.4.7 Treatment targets and monitoring the lipid-lowering effect

Depending on the guideline, LDL-C targets are chosen (sometimes also TC and other secondary targets). Some recent guidelines focus more on intensity of statin therapy (with an expected % decrease of LDL-C).

Monitoring the lipid-lowering effect is generally recommended, but the frequency differs between guidelines.

3.4.8 Guidance of the patient

Each guidelines addresses the importance of lifestyle changes (nutrion, physical activity, smoking cessation). Communication with the patient and a fixed plan for follow-up and treatment are considered important.

4 Evidence tables and conclusions : Efficacy of statins

4.1 Statin versus placebo

4.1.1 CTT 2012 Individual patient data meta-analysis

4.1.1.1 Evidence tables

Statin versus control (22 trials) and statin high dose versus statin low dose (5 trials)

Meta-analysis of individual patient data Inclusion criteria -RCT Lipid modification therapy at least 1 treatment arm, no multiple interventions >= 2y scheduled duration Aim >= 1000 patients Results not known at time of protocol description (1995) Search strategy "Potentially eligible studies are to be identified prospectively by a range of methods, including computer-aided literature searches, manual searches of journals, scrutiny of the reference lists of trials and review articles, scrutiny of abstracts and meeting proceedings, collaboration with the trial register of the International Committee on Thrombosis and Haemostasis, and by inquiry among colleagues, collaborators, and manufacturers of lipid-modifying agents." Note: no further information on the methods of the computer-aided literature search Assessment of quality of included trials: no ITT analysis: yes Other methodological remarks Risk modelling calculation with cox proportional hazards model ٠ No mention of analysis according to baseline risk in original protocol. ٠ Meta-analyses were weighted by the absolute LDL cholesterol difference in that trial at 1 year (mmol/l) • Authors' note: Predicted risk compared well with observed risk for each trial, as well as within each 5-year risk group. Authors' note: Individual participant data were unavailable from only two eligible trials in 6331 higher-risk patients with pre-existing vascular disease (SPARCL36 and GREACE37) ...

Ref	Comparison	N/n	Outcomes	Result			
CTT 2012(4)	Statins	N= 27		5-y MVE risk	Events/y (%)	Events/y (%)	RR (CI) per 1·0 mmol/L
	Vs	n= 174149		at baseline	Statin/more	Controll/less	reduction in LDL cholesterol
Design:	placebo		Major vascular event (MVE) (major	<5%	167 (0.38)	254 (0.56)	0.62 (0.47–0.81)
individual			coronary events (ie, non-fatal	≥5% to <10%	604 (1.10)	847 (1.57)	0.69 (0.60–0.79)
patient data	or		myocardial infarction or coronary	≥10% to <20%	3614 (2.96)	4195 (3.50)	0.79 (0.74–0.85)
MA			death, strokes, or coronary	≥20% to <30%	4108 (4.74)	4919 (5.80)	0.81 (0.77–0.86)
	statin high		revascularisations)	≥30%	2787 (7.64)	3458 (9.82)	0.79 (0.74–0.84)
Search date:	dose vs low			Overall	11 280 (3·27)	13 673 (4·04)	0.79 (0.77–0.81) p<0.0001
(reported	dose		Major vascular event - Participants	<5%	148 (0.35)	229 (0.53)	0.61 (0.45–0.81)
end of 2009,			without vascular disease	≥5% to <10%	487 (1.02)	716 (1.53)	0.66 (0.57–0.77)
trial had to				≥10% to <20%	854 (2.52)	1003 (2.98)	0.82 (0.72–0.93)
provide data				≥20% to <30%	294 (4.40)	351 (5.28)	0.81 (0.65-1.01)
before june				≥30%	121 (7.29)	126 (8.16)	0.83 (0.58-1.18)
2011)				Overall	1904 (1·44)	2425 (1.84)	0.75 (0.70–0.80) p<0·0001
N 27			Major vascular event - Participants	<5%	19 (0.87)	25 (1.18)	0.73 (0.33-1.61)
N=27			with vascular disease	≥5% to <10%	117 (1.56)	131 (1.80)	0.84 (0.62–1.14)
n=174149				≥10% to <20%	2760 (3.13)	3192 (3.71)	0.78 (0.72–0.85)
median				≥20% to <30%	3814 (4.77)	4568 (5.85)	0.81 (0.76–0.86)
follow-up				≥30%	2666 (7.66)	3332 (9.90)	0.79 (0.74–0.84)
duration in				Overall	9376 (4·41)	11 248 (5·43)	0.80 (0.77–0.82) p<0·0001
survivors 4.8			Major vascular event - Participants	<5%	5 (0.25)	17 (0.81)	0.37 (0.13 – 1.08)
			>70y (web appendix)	≥5% to <10%	97 (1.43)	119 (1.82)	0.79 (0.56 – 1.10)
years			remark: protocol stated analysis for	≥10% to <20%	898 (3.48)	958 (3.66)	0.90 (0.79 – 1.04)
			> and < 65j	≥20% to <30%	1061 (4.83)	1235 (5.87)	0.81 (0.72 – 0.91)
				≥30%	891 (8.19)	1056 (9.96)	0.81 (0.71 – 0.91)
				Overall	2952 (4.37)	3385 (5.09)	0.83 (0.78 – 0.87) p<0.0001
			Major coronary event	<5%	50 (0·11)	88 (0·19)	0·57 (0·36–0·89)
			(non-fatal myocardial infarction or	≥5% to <10%	276 (0.50)	435 (0·79)	0.61 (0.50–0.74)
			coronary death)	≥10% to <20%	1644 (1·29)	1973 (1·57)	0·77 (0·69–0·85)
				≥20% to <30%	1789 (1·93)	2282 (2·49)	0·77 (0·71–0·83)
				≥30%	1471 (3·73)	1887 (4·86)	0·78 (0·72–0·84)
				Overall	5230 (1·45)	6665 (1·87)	0·76 (0·73–0·79) p<0·0001

Anu studio	×۵۵/	71 (0.10)	00 (0 20)	0.74 (0.46, 1.10)
Any stroke	<5%	71 (0.16)	90 (0.20)	0.74 (0.46–1.19)
	≥5% to <10%	190 (0.34)	240 (0.43)	0.77 (0.60–0.98)
	≥10% to <20%	797 (0·62)	907 (0.71)	0.86 (0.75–0.98)
	≥20% to <30%	781 (0.84)	900 (0.97)	0.86 (0.75–0.97)
	≥30%	571 (1·45)	661 (1.68)	0.86 (0.75–0.99)
	Overall	2410 (0.67)	2798 (0·78)	0.85 (0.80–0.89) p<0∙0001
Any vascular death -	<5%	79 (0 · 18)	92 (0 · 20)	0 • 87 (0 • 58-1 • 31)
	≥5% to <10%	310 (0 · 55)	330 (0 • 59)	0 • 92 (0 • 74-1 • 13)
	≥10% to <20%	1473 (1 · 14)	1591 (1 · 23)	0 • 88 (0 • 79-0 • 97)
	≥20% to <30%	1596 (1 · 67)	1833 (1 • 92)	0 • 88 (0 • 81-0 • 96)
	≥30%	1340 (3 · 23)	1533 (3 · 69)	0 • 87 (0 • 80-0 • 95)
	Overall	4798 (1.30)	5379 (1.47)	0.88 (0.84–0.91) p<0·0001
Any vascular death - Participants	<5%	31 (0 • 07)	40 (0·09)	0.80 (0.43–1.47)
without vascular disease	≥5% to <10%	117 (0 · 24)	153 (0·32)	0.75 (0.55–1.04)
	≥10% to <20%	307 (0 · 87)	342 (0·96)	0.84 (0.67–1.05)
	≥20% to <30%	164 (2 · 32)	168 (2·34)	0.97 (0.72–1.32)
	≥30%	93 (5 · 21)	98 (5·84)	0.88 (0.59–1.33)
	Overall	712 (0.53)	801 (0.59)	0.85 (0.77–0.95) p=0·004
Any vascular death - Participants	<5%	48 (2 • 16)	52 (2·40)	0 • 93 (0 • 53-1 • 62)
with vascular disease	≥5% to <10%	193 (2 · 52)	177 (2.35)	$1 \cdot 07 (0 \cdot 81 - 1 \cdot 41)$
	≥10% to <20%	1166 (1 · 24)	1249 (1·34)	$0 \cdot 89 (0 \cdot 79 - 1 \cdot 00)$
	≥20% to <30%	1432 (1 · 61)	1665 (1·89)	0 - 87 (0 - 80-0 - 95)
	≥30%	1247 (3 · 14)	1435 (3.60)	0 • 87 (0 • 79-0 • 95)
	Overall	4086 (1.76)	4578 (1·98)	0·88 (0·84–0·92) p<0·0001
All-cause mortality (web appendix)	<5%	232 (0.52)	244 (0.54)	0.97 (0.76 – 1.24)
	≥5% to <10%	639 (1.14)	710 (1.27)	0.89 (0.77 – 1.03)
	≥10% to <20%	2651 (2.04)	2827 (2.19)	0.91 (0.84 – 0.98)
	≥20% to <30%	2683 (2.80)	2903 (3.04)	0.92 (0.86 – 0.99)
	≥30%	2165 (5.22)	2403 (5.78)	0.89 (0.83 – 0.96)
	Overall	8370 (2.27)	9087 (2.47)	0.91 (0.88 – 0.93) p<0.0001

	All-cause mortality - Participants	<5%	164 (0.38)	177 (0.41)	0.94 (0.71 – 1.26)
	without vascular disease (web	≥5% to <10%	372 (0.77)	446 (0.93)	0.83 (0.69 – 0.99)
	appendix)	≥10% to <20%	703 (1.99)	778 (2.19)	0.88 (0.76 - 1.02)
		≥20% to <30%	363 (5.13)	339 (4.73)	1.06 (0.86 - 1.32)
		≥30%	192 (10.76)	192 (11.44)	0.94 (0.70 – 1.25)
		Overall	1794 (1.33)	1932 (1.42)	0.91 (0.85 – 0.97) p= 0.007
	All-cause mortality - Participants	<5%	68 (3.06)	67 (3.10)	1.04 (0.65 – 1.68)
	with vascular disease (web	≥5% to <10%	267 (3.48)	264 (3.50)	1.00 (0.80 - 1.26)
	appendix)	≥10% to <20%	1948 (2.07)	2049 (2.19)	0.92 (0.84 - 1.00)
		≥20% to <30%	2320 (2.62)	2564 (2.91)	0.90 (0.84 – 0.97)
		≥30%	1973 (4.97)	2211 (5.54)	0.89 (0.83 – 0.96)
		Overall	6576 (2.83)	7155 (3.09)	0.90 (0.87 – 0.93) p<0.0001
	Cancer incidence	Overall	5221 (1·45)	5210 (1·45)	1.00 (0.96–1.04) p=0.99
	Cancer death	Overall	1834 (0.50)	1849 (0·50)	0·99 (0·93–1·06) p=0·86
	mean baseline LDL cholesterol		L DL cholesterol 3-7 e at 1 year 1-08 m		

Webfigure 8: Effects on cause-specific mortality per 1.0 mmol/L reduction in LDL cholesterol at different levels of

t baseline	Statin/more	Control/less	RR (CI) per 1.0 mmol/L reduction	In LDL cholesterol	Trend test
CHD death			1		
< 5%	14 (0.03)	9 (0.02)		1.60 (0.57 - 4.47)	
≥ 5%,<10%	63 (0.11)	85 (0.15)	<¦	0.73 (0.47 - 1.11)	
≥ 10%,<20%	582 (0.45)	635 (0.49)		0.84 (0.70 - 1.00)	$\chi^2_1 = 1.13$
≥ 20%,<30%	633 (0.66)	776 (0.81)	_ _	0.82 (0.71 - 0.95)	(p=0.3)
≥ 30%	610 (1.47)	785 (1.89)		0.77 (0.69 - 0.87)	
Overall	1902 (0.52)	2290 (0.62)	- ↔	0.80 (0.76 - 0.85)	
Other cardiac death				p<0.0001	
< 5%	51 (0.11)	64 (0.14)	<	0.79 (0.47 - 1.32)	
≥ 5%,<10%	172 (0.31)	185 (0.33)	<u>i</u>	0.90 (0.68 - 1.20)	
≥ 10%,<20%	578 (0.45)	623 (0.48)		0.91 (0.78 - 1.05)	$\chi_1^2 = 1.25$
≥ 20%,<30%	688 (0.72)	763 (0.80)		0.91 (0.80 - 1.03)	(p=0.3)
				0.98 (0.83 - 1.14)	(p=0.5)
≥ 30%	466 (1.12)	486 (1.17)	-	0.92 (0.87 - 0.98)	
Overall	1955 (0.53)	2121 (0.58)	</td <td>p= 0.006</td> <td></td>	p= 0.006	
Stroke death < 5%	10 (0.02)	13 (0.03)		0.77 (0.25 - 2.35)	
≥ 5%,<10%	42 (0.07)	37 (0.07)	,	• 1.12 (0.62 - 2.03)	.2
≥ 10%,<20%	170 (0.13)	180 (0.14)		0.90(0.67 - 1.22)	$\chi_1^2 = 0.54$
≥ 20%,<30%	152 (0.16)	165 (0.17)		0.94 (0.71 - 1.25)	(p=0.5)
≥ 30%	147 (0.35)	138 (0.33)	·	1.08 (0.81 - 1.45)	
Overall	521 (0.14)	533 (0.15)	\diamond	0.98 (0.86 - 1.10) p= 0.69	
Other vascular deat					
< 5%	4 (0.01)	6 (0.01)	<>	0.64 (0.12 - 3.45)	
≥ 5%,<10%	33 (0.06)	23 (0.04)	— 	• 1.48 (0.73 - 3.00)	
≥ 10%,<20%	143 (0.11)	153 (0.12)		0.88 (0.63 - 1.22)	$\chi_1^2 = 0.08$
≥ 20%,<30%	123 (0.13)	129 (0.14)		0.94 (0.68 - 1.30)	(p=0.8)
≥ 30%	117 (0.28)	124 (0.30)		0.96 (0.69 - 1.32)	
Overall	420 (0.11)	435 (0.12)	\diamond	0.95 (0.83 - 1.09) p= 0.48	
Any vascular death					
< 5%	79 (0.18)	92 (0.20)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.87 (0.58 - 1.31)	
≥ 5%,<10%	310 (0.55)	330 (0.59)		0.92 (0.74 - 1.13)	
≥ 10%,<20%	1473 (1.14)	1591 (1.23)	-+-	0.88 (0.79 - 0.97)	$\chi_1^2 = 0.18$
≥ 20%,<30%	1596 (1.67)	1833 (1.92)	-#-	0.88 (0.81 - 0.96)	(p=0.7)
≥ 30%	1340 (3.23)	1533 (3.69)		0.87 (0.80 - 0.95)	
Overall	4798 (1.30)	5379 (1.47)	\$	0.88 (0.84 – 0.91) p<0.0001	
Non-vascular death	ı		2	p -0.0001	
< 5%	116 (0.26)	101 (0.22)	\rightarrow	• 1.16 (0.80 - 1.68)	
≥ 5%,<10%	270 (0.48)	309 (0.55)		0.88 (0.71 - 1.09)	0
≥ 10%,<20%	1054 (0.81)	1104 (0.86)		0.94 (0.83 - 1.07)	$\chi_1^2 = 0.02$
≥20%,<30%	963 (1.01)	941 (0.99)	_ + _	1.00 (0.89 - 1.13)	(p=0.9)
≥ 30%	681 (1.64)	705 (1.70)		0.96 (0.83 - 1.10)	
Overall	3084 (0.84)	3160 (0.86)	\diamond	0.96 (0.92 – 1.01) p= 0.16	
Any death*		8000 (2014) (2014) (2010) (2010)	:		
< 5%	232 (0.52)	244 (0.54)		0.97 (0.76 - 1.24)	
≥5%,<10%	639 (1.14)	710 (1.27)		0.89 (0.77 - 1.03)	24
≥ 10%,<20%	2651 (2.04)	2827 (2.19)	-#-	0.91 (0.84 - 0.98)	$\chi^2_1 = 0.22$
≥ 20%,<30%	2683 (2.80)	2903 (3.04)	-#-	0.92 (0.86 - 0.99)	(p=0.6)
≥ 30%	2165 (5.22)	2403 (5.78)	-	0.89 (0.83 - 0.96)	
	8370 (2.27)	9087 (2.47)	-	0.91 (0.88 - 0.93)	
Overall	0010 (2.21)	3007 (2.47)	¢ '	p<0.0001	
			52 ST 55		
			0.5 0.75 1 1.25 1	.5	

*Includes 488 (statin/more statin) vs 548 (control/less statin) deaths of unknown cause

5-year MVE risk	Deaths (%	per annum)			
at baseline	Statin/more	Control/less	RR (CI) per 1.0 mr	nol/L reduction in LDL cholester	ol Trend test
Participants withou	ıt vascular disea	ISE	1		
< 5%	164 (0.38)	177 (0.41)	; _	0.94 (0.71 - 1.2	6)
≥ 5%,<10%	372 (0.77)	446 (0.93)	_	0.83 (0.69 – 0.9	9)
≥ 10%,<20%	703 (1.99)	778 (2.19)	= ¦	0.88 (0.76 - 1.0	2) $\chi_1^2 = 1.57$
≥ 20%,<30%	363 (5.13)	339 (4.73)	<u> </u>	1.06 (0.86 - 1.3	2) (p=0.2)
\geq 30%	192 (10.76)	192 (11.44)		0.94 (0.70 - 1.2	5)
Subtotal	1794 (1.33)	1932 (1.42)		0.91 (0.85 – 0.9 p= 0.00	,
Participants with va	ascular disease				
< 5%	68 (3.06)	67 (3.10)		> 1.04 (0.65 - 1.6	8)
≥ 5%,<10%	267 (3.48)	264 (3.50)		1.00 (0.80 - 1.2	6)
≥ 10%,<20%	1948 (2.07)	2049 (2.19)	-#-	0.92 (0.84 - 1.0	0) $\chi_1^2 = 1.82$
≥ 20%,<30%	2320 (2.62)	2564 (2.91)	-	0.90 (0.84 - 0.9	7) (p=0.2)
$\geq 30\%$	1973 (4.97)	2211 (5.54)	-	0.89 (0.83 - 0.9	6)
Subtotal	6576 (2.83)	7155 (3.09)	\$	0.90 (0.87 – 0.9 p<0.000	
All participants					
< 5%	232 (0.52)	244 (0.54)		0.97 (0.76 - 1.2	4)
≥5%,<10%	639 (1.14)	710 (1.27)	_	- 0.89 (0.77 - 1.0	3)
≥ 10%,<20%	2651 (2.04)	2827 (2.19)	-	0.91 (0.84 – 0.9	8) $\chi_1^2 = 0.22$
≥ 20%,<30%	2683 (2.80)	2903 (3.04)	-#-	0.92 (0.86 - 0.9	9) (p=0.6)
≥ 30%	2165 (5.22)	2403 (5.78)	-	0.89 (0.83 – 0.9	6)
Overall	8370 (2.27)	9087 (2.47)	¢	0.91 (0.88 - 0.9	
Heterogeneity betwe	en participants w	vithout and with vasc		p<0.000	
$\chi_1^2 = 0.03 \text{ (p=0.9)}$				├── <u>┬──</u> ┐	
NI			0.5 0.75	1 1.25 1.5	
	 95% limits 		Statin/more	Control/less	
-			better	better	

Webfigure 9: Effects on any deaths per 1.0 mmol/L reduction in LDL cholesterol at different levels of risk, by history of vascular disease and overall

179 (statin/more statin) vs 210 (control/less statin) deaths of unknown cause are included among participants without vascular disease. 309 (statin/more statin) vs 338 (control/less statin) deaths of unknown cause are included among participants with vascular disease.

Ref	Comparison	N/n	Outcomes	Result	
CTT 2012	Statins	N= 22		5-y MVE risk at	RR (CI) per 1.0 mmol/L reduction in LDL
	Vs	n= 134 537		baseline	cholesterol
Design:	placebo		Major vascular event (major coronary	<5%	0.62 (0.47 – 0.81)
individual			events (ie, non-fatal myocardial infarction or	≥5% to <10%	0.69 (0.60 – 0.79)
patient data			coronary death), strokes, or coronary	≥10% to <20%	0.80 (0.74 – 0.86)
MA			revascularisations	≥20% to <30%	0.83 (0.78 – 0.88)
				≥30%	0.80 (0.75 – 0.85)
Search date:				Overall	0.80 (0.78 – 0.82) p<0.0001
(reported end of 2009,			Major coronary event (non-fatal myocardial	<5%	0.57 (0.36 – 0.89)
trial had to			infarction or coronary death)	≥5% to <10%	0.61 (0.50 – 0.74)
provide data				≥10% to <20%	0.76 (0.69 – 0.85)
before june				≥20% to <30%	0.78 (0.71 – 0.85)
2011)				≥30%	0.78 (0.72 – 0.84)
2011)				Overall	0.76 (0.73 – 0.79) p<0.0001
			Any stroke	<5%	0.74 (0.46 – 1.19)
				≥5% to <10%	0.77 (0.60 – 0.98)
				≥10% to <20%	0.85 (0.74 – 0.98)
				≥20% to <30%	0.87 (0.76 – 1.00)
				≥30%	0.88 (0.76 – 1.01)
				Overall	0.85 (0.81 – 0.90) p<0.0001

Webfigure 5: Effects on major coronary events, strokes, coronary revascularisation procedures and major vase events per 1.0 mmol/L reduction in LDL cholesterol at different levels of risk in the 22 statin vs control trials

5-year MVE risk	Events (%	per annum)			
at baseline	Statin	Control	RR (CI) per 1.0 mmol	I/L reduction in LDL cholesterol	Trend test
Major coronary eve	nt		1		
< 5%	50 (0.11)	88 (0.19)	<¦	0.57 (0.36 - 0.89)	
≥ 5%,<10%	271 (0.49)	432 (0.79)	_ _	0.61 (0.50 - 0.74)	
≥ 10%,<20%	949 (1.18)	1219 (1.54)	_ + _	0.76 (0.69 - 0.85)	$\chi_1^2 = 5.86$
≥ 20%,<30%	1155 (1.93)	1526 (2.57)	- i -	0.78 (0.71 - 0.85)	(p=0.02)
≥ 30%	1080 (3.75)	1427 (5.12)	÷	0.78 (0.72 - 0.84)	. ,
Overall	3505 (1.30)	4692 (1.76)		0.76 (0.73 − 0.79) p<0.0001	
Any stroke					
< 5%	71 (0.16)	90 (0.20)	<¦	0.74 (0.46 - 1.19)	
≥ 5%,<10%	189 (0.34)	238 (0.43)	_	0.77 (0.60 - 0.98)	
≥ 10%,<20%	578 (0.72)	677 (0.85)	_ + _	0.85 (0.74 - 0.98)	χ ² =1.63
≥ 20%,<30%	564 (0.95)	646 (1.08)	_ _	0.87 (0.76 - 1.00)	(p=0.2)
≥ 30%	436 (1.54)	484 (1.73)		0.88 (0.76 - 1.01)	
Overall	1838 (0.68)	2135 (0.80)	\$	0.85 (0.81 − 0.90) p<0.0001	
Coronary revascula	risation				
< 5%	73 (0.16)	135 (0.30)	←¦	0.52 (0.35 - 0.75)	
≥ 5%,<10%	221 (0.40)	340 (0.62)	_ _	0.63 (0.51 - 0.79)	
≥ 10%,<20%	879 (1.10)	1090 (1.39)		0.77 (0.68 - 0.86)	$\chi^{2}_{1}=6.02$
≥ 20%,<30%	1289 (2.21)	1602 (2.77)		0.82 (0.75 - 0.89)	(p=0.01)
≥ 30%	757 (2.67)	1002 (3.65)	- <u>+</u> -	0.77 (0.70 - 0.85)	. ,
Overall	3219 (1.21)	4169 (1.58)	\$	0.77 (0.74 – 0.80) p<0.0001	
Major vascular eve	nt				
< 5%	167 (0.38)	254 (0.56)	← ¦	0.62 (0.47 - 0.81)	
≥ 5%,<10%	596 (1.09)	840 (1.56)	_ _'	0.69 (0.60 - 0.79)	
≥ 10%,<20%	2133 (2.74)	2566 (3.37)	0.80 (0.74 - 0.86)	$\chi_1^2 = 5.29$
≥20%,<30%	2607 (4.63)	3175 (5.73)	₩	0.83 (0.78 - 0.88)	(p=0.02)
$\geq 30\%$	1940 (7.23)	2422 (9.48)	#	0.80 (0.75 - 0.85)	
Overall	7443 (2.86)	9257 (3.62)	\$	0.80 (0.78 – 0.82) p<0.0001	
			0.5 0.75 1	1.25 1.5	
	• 95% limits		Statin better	Control better	

Ref	Comparison	N/n	Outcomes	Result	
CTT 2012	Statins high	N= 5		5-y MVE risk at	RR (CI) per 1.0 mmol/L reduction in LDL
	Vs	n= 39 612		baseline	cholesterol
Design: MA	Statins low		Major vascular event (major coronary events	≥10% to <20%	0.75 (0.61 – 0.92)
			(ie, non-fatal myocardial infarction or	≥20% to <30%	0.70 (0.59 – 0.83)
Search date:			coronary death), strokes, or coronary	≥30%	0.72 (0.59 – 0.88)
(june 2011)			revascularisations	Overall	0.72 (0.66 – 0.78) p<0.0001
			Major coronary event (non-fatal myocardial	≥10% to <20%	0.79 (0.57 – 1.10)
			infarction or coronary death)	≥20% to <30%	0.68 (0.52 – 0.89)
				≥30%	0.80 (0.59 – 1.09)
				Overall	0.74 (0.65 – 0.85) p<0.0001
			Any stroke	≥10% to <20%	0.90 (0.51 – 1.59)
				≥20% to <30%	0.69 (0.44 – 1.09)
				≥30%	0.70 (0.42 – 1.18)
				Overall	0.74 (0.59 – 0.92) p= 0.007

Webfigure 6: Effects on major coronary events, strokes, coronary revascularisation procedures and major vascular events per 1.0 mmol/L reduction in LDL cholesterol at different levels of risk in the 5 trials of more vs less statin

5−year MVE risk, less statin	Events (% More statin	per annum) Less statin	RR (CI) per 1.0 mm	ol/L reduction in LDL cholesterol	Trend test
Major coronary eve	nt		1		
≥ 10%,<20%*	700 (1.49)	757 (1.61)			
\geq 20%,<30%	634 (1.92)	756 (2.35)		0.68 (0.52 - 0.89)	$\chi_1^2 = 0.01$
$\geq 30\%$	391 (3.67)	460 (4.19)	<u>+</u> •	- 0.80 (0.59 - 1.09)	(p=0.9)
Overall	1725 (1.90)	1973 (2.19)		0.74 (0.65 – 0.85) p<0.0001	
Any stroke					
≥ 10%,<20%*	220 (0.46)	232 (0.49)		→ 0.90 (0.51 - 1.59)	
≥20%,<30%	217 (0.65)	254 (0.77)	<	- 0.69 (0.44 - 1.09)	$\chi_{1}^{2}=0.63$
≥ 30%	135 (1.23)	177 (1.56)	< · !	0.70 (0.42 - 1.18)	(p=0.4)
Overall	572 (0.62)	663 (0.72)		0.74 (0.59 – 0.92) p= 0.007	
Coronary revascula	risation				
≥ 10%,<20%*	830 (1.82)	973 (2.15)		0.66 (0.51 - 0.86)	
≥ 20%,<30%	917 (2.92)	1115 (3.68)		0.66 (0.54 - 0.81)	$\chi_{1}^{2}=0.01$
≥ 30%	503 (4.98)	653 (6.40)	i	0.65 (0.51 - 0.84)	(p=0.9)
Overall	2250 (2.58)	2741 (3.20)	- -	0.66 (0.60 – 0.73) p<0.0001	
Major vascular ever	nt		.		
≥ 10%,<20%*	1489 (3.35)	1636 (3.71)		0.75 (0.61 - 0.92)	
≥ 20%,<30%	1501 (4.93)	1744 (5.95)	_ _	0.70 (0.59 - 0.83)	$\chi_1^2 = 0.12$
\geq 30%	847 (8.79)	1036 (10.74)	_ +	0.72 (0.59 – 0.88)	(p=0.7)
Overall	3837 (4.54)	4416 (5.32)	-	0.72 (0.66 – 0.78) p<0.0001	
			0.5 0.75 1	1.25 1.5	
	95% limits		More statin better	Less statin better	
*Includes 141 partici	pants (48 from A	to Z and 93 from SE		5-year risk of MVE less than 10%	

*Includes 141 participants (48 from A to Z and 93 from SEARCH) with an estimated 5-year risk of MVE less than 10%.

* Characteristics of included studies: see below

Ref + design	n	Population	Duration	Comparison	Methodology
Statin versus control					
(22 trials)					
4D 2005(5) multicenter, randomized, double- blind, prospective study	1255	 persons with type 2 diabetes mellitus receiving maintenance hemodialysis at high risk for cardiovascular disease and death, 	median follow-up period of four years	20 mg of atorvastatin per day or matching placebo. The primary end point was a composite of death from cardiac causes, nonfatal myocardial infarction, and stroke	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Adequate FOLLOW-UP:30% discontinued before end of study (6% medical reasons, 10% wish of patient,) ITT:yes
					note: 4 week run-in placebo FUNDING: Pfizer
AFCAPS/ TexCAPS (6) 1998 RCT, double blind	6606	participants in Texas, USA; mean age 58; 57.5% men; 89%Caucasian. None with any clinical evidence of CVD	5.2 years	20-40 mg lovastatin vs placebo; all participants received advice on diet	ALLOCATION CONC: unclear RANDO: unclear BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: no dropouts reported ITT:yes FUNDING: unclear risk (funded by pharm industry) Trial was stopped prematurely. To be terminated when 320 participants had
ALERT 2003(7)	2102	renal transplant recipients with total	mean follow-up	fluvastatin	experienced primary outcome event. Stopped when 267 had done at 5.2 years ALLOCATION CONC:
multicentre, randomised, double- blind, placebo-		cholesterol 4·0–9·0 mmol/L	of 5·1 years	or placebo The primary endpoint was the occurrence of a major adverse	Adequate RANDO: Adequate BLINDING :

controlled trial				cardiac event, defined as cardiac death, non-fatal myocardial infarction (MI), or coronary intervention procedure	Adequate ITT:yes FUNDING:Novartis we doubled study-medication dose after around 2 years. This rise in dose of fluvastatin from 40 to 80 mg daily was predicted to reduce LDL-cholesterol concentrations by an additional 6%.
ALLHAT-LLT 2002(8) Multicenter (513 primarily community- based North American clinical centers), randomized, nonblinded trial	10355	"older, moderately hypercholesterolemic, hypertensive participants with at least 1 additional CHD risk factor" The specific eligibility criteria for the ALLHAT-LLT included prior enrollment in ALLHAT (age ≥55 years and stage 1 or 2 hypertension with at least 1 additional CHD risk factor); fasting LDL-C level of 120 to 189 mg/dL (3.1 to 4.9 mmol/L) for those with no known CHD, or 100 to 129 mg/dL (2.6 to 3.3 mmol/L) for those with known CHD (the upper limit was 159 mg/dL [4.1 mmol/L] prior to April 5, 1994, but was changed in light of 4S ⁴ findings); and fasting triglyceride levels lower than 350 mg/dL (3.9 mmol/L) Baseline mean total cholesterol was 224 mg/dL; LDL-C, 146 mg/dL; high-density lipoprotein cholesterol, 48 mg/dL; and triglycerides, 152 mg/dL. Mean age was 66 years, 49% were women, 38% black and 23% Hispanic, 14% had a history of CHD, and 35% had type 2 diabetes.	mean follow-up was 4.8 years	Pravastatin, 40 mg/d vs usual care The usual care group was treated for LDL-C lowering according to the discretion of their primary care physicians. However, vigorous cholesterol-lowering therapy in the usual care group was discouraged unless warranted by a change in clinical circumstances.	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : no FOLLOW-UP: At the end of the trial, 84.8% of participants were known to be alive, 12.3% were confirmed dead, 0.5% were reported dead with confirmation pending, and 2.4% had unknown vital status. ITT:yes FUNDING: Methodological remarks: because of the modest cholesterol differential between pravastatin and usual care, ALLHAT-LLT lacked the power to discriminate between the expected reductions in mortality and CHD events and the null hypothesis. The primary outcome was all-cause mortality, with follow-up for up to 8 years.

ALLIANCE 2004(9)	2442	CHD patients with hyperlipidemia	51.5 months on average	Atorvastatin- titrated to LDL-C goals of <80 mg/dl (2.1 mmol/l) or a maximum atorvastatin dose of 80 mg/day versus Usual-care (any treatment deemed appropriate by their regular physicians)	ALLOCATION CONC: unclear RANDO: unclear BLINDING : inadequate FOLLOW-UP: End point assessments were complete in 958 atorvastatin- group and 941 usual-care patients. Partial assessments occurred in 259 patients in the atorvastatin group and 284 patients in the usual care group who did not complete four years of study participation because of adverse events, withdrawn consent, or follow-up loss. ITT:yes
ASCOT-LLA 2003(10)	10305	Hypertensive patients (aged 40–79 years	median follow-up	Atorvastatin 10 mg versus	The primary efficacy parameter was time to first cardiovascular event. ALLOCATION CONC:
multicentre randomised controlled trial		with at least three other cardiovascular risk factors) with non-fasting total cholesterol concentrations 6.5 mmol/L or less	of 3·3 years	placebo	unclear RANDO: Adequate BLINDING : assessors: yes FOLLOW-UP: 99% ITT:yes Note: 4 week run-in FUNDING:Pfizer
ASPEN 2006(11)	2410	participants with type 2 diabetes based in 16 developed countries with mean age	2.4 years	10 mg atorvastatin Vs	ALLOCATION CONC: unclear
RCT, double blind		60; 62.5% men; 84% Caucasian. <u>< 10%</u> with clinical evidence of CVD		placebo;	RANDO: unclear BLINDING : Participants/personnel/assessors Adequate

					FOLLOW-UP: 22% drop outs reported ITT:yes FUNDING: unclear risk (funded by pharm industry)
AURORA 2009(12) international, multicenter, randomized, double- blind, prospective trial	2776	50 to 80 years of age, who were undergoing maintenance hemodialysis	median follow-up period of 3.8 years	rosuvastatin, 10 mg daily, or placebo The combined primary end point was death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke.	ALLOCATION CONC: unclear RANDO: Adequate BLINDING : Participants/personnel/assessors not described FOLLOW-UP: no patients lost ITT:yes) FUNDING:AstraZeneca
CARDS 2004(13)	2838	participants with diabetes based in UK and Ireland aged 40-75 years (mean 61.7) ; 68% men; 94.5% Caucasian. None with any clinical evidence of CVD	3.9-4 years	10 mg atorvastatin versus placebo all patients were given counselling on cessation of smoking	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate (triple blind part/pers/assess) FOLLOW-UP: 0% dropped out ITT:yes FUNDING: unclear risk (funded by pharm industry) Trial stopped prematurely due to large beneficial treatment effect
CARE 1996(14)	4159	3583 men and 576 women with myocardial infarction who had plasma	5 years	Pravastatin 40mg versus	ALLOCATION CONC: Adequate

double-blind trial		total cholesterol levels below 240 mg per deciliter (mean, 209) and low-density lipoprotein (LDL) cholesterol levels of 115 to 174 mg per deciliter (mean, 139).		placebo The primary end point was a fatal coronary event or a nonfatal myocardial infarction.	RANDO: Adequate BLINDING : Adequate FOLLOW-UP: 8% discontinued study medication and started open label treatment ITT:yes FUNDING:Bristol-Myers Squibb
CORONA 2007(15)	5011	patients at least 60 years of age with New York Heart Association class II, III, or IV ischemic, systolic heart failure	median follow-up of 32.8 months	10 mg of rosuvastatin or placebo per day The primary composite outcome was death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel:Adequate Assessors: unclear FOLLOW-UP: ? ITT:yes note: 2-4 week placebo run-in FUNDING:AstraZeneca
GISSI-HF 2008(16) randomised, double- blind, placebo- controlled trial	4574	patients aged 18 years or older with chronic heart failure of New York Heart Association class II–IV, irrespective of cause and left ventricular ejection fraction	median of 3·9 years (IQR 3·0– 4·4)	rosuvastatin 10 mg daily or placebo Primary endpoints were time to death, and time to death or admission to hospital for cardiovascular reasons	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors FOLLOW-UP: ITT:yes FUNDING: Società Prodotti Antibiotici (SPA; Italy), Pfizer, Sigma Tau, and AstraZeneca.
GISSI-P 2000(17)	4271	recent acute myocardial infarction patients (< or = 6 months) with total	Mean follow-up time was 23.0 +/-	pravastatin 20 mg daily or no treatment	ALLOCATION CONC: inadequate

open trial		blood cholesterol > or = 200 mg/dl	6.7 months (median 24.3		RANDO:
			months)		: BLINDING : inadequate
					FOLLOW-UP: ?
					ITT:yes/no ('author's definition')
					FUNDING:
					Methodological remarks:GISSI-P was
					started in 1993 and its story was
					crossed by the publication of the
					results of similarly designed clinical
					trials. The publication of 4S results in
					1994 prompted the Data Safety and
					Monitoring Board (DSMB) and the
					Steering Committee (SC) ;
					decreased statistical power due to
					its premature stopping
HPS 2002(18)	20536	UK adults (aged 40–80 years) with	scheduled 5-year	40 mg simvastatin daily	ALLOCATION CONC:
		coronary disease, other occlusive arterial	treatment period	(average compliance: 85%) or	Adequate
randomised placebo		disease, or diabetes		matching placebo	RANDO:
controlled trial				(average non-study statin use:	Adequate BLINDING :
				17%).	Participants/personnel/assessors?
				17707.	Adequate
					FOLLOW-UP: >99%
					ITT:yes
					FUNDING:?
					There was a change in the protocol so
					that only patients whose total blood
					cholesterol was < 250 mg/dl could be
					randomized whilst patients with total
					blood cholesterol > 250 mg/dl who
					had already been enrolled in the

					study had to be re-evaluated and, if appropriate, pharmacologically treated. The DSMB and the SC agreed to stop randomization prematurely in late 1996 after the publication of CARE results. Primary outcomes were mortality (for overall analyses) and fatal or non-fatal vascular events (for subcategory analyses), with subsidiary assessments of cancer and of other major morbidity.
JUPITER 2008(19)	17.802	Apparently healthy men and women with	1.9 years	Rosuvastatin 20 mg daily	ALLOCATION CONC: Adequate
DCT develop blind		low-density lipoprotein (LDL) cholesterol levels of less than 130 mg per deciliter		versus placebo	RANDO: Adequate BLINDING :
RCT, double blind		(3.4 mmol per liter) and high-sensitivity C-		placebo	Participants/personnel/ assessors
		reactive protein levels of 2.0 mg per liter		At the time the study was	Adequate
		or higher		terminated, 75% of	
		participants > 50 years. None with any clinical evidence of CVD		participants were taking their study pills.	FOLLOW-UP: drop outs unclear
					ITT: yes
					FUNDING: High risk (funded by pharm industry)
					Other remarks:
					Stopped early with a follow-up of 1.9 years.
					Run-in : 4-week run-in phase during which they received
					placebo. Only subjects who
					successfully completed the run-in
					phase were enrolled (19323 received
					run-in, of which 1521 excluded =7.8%) Primary endpoint event rate higher
					than predicted. Mortality higher than
					predicted (by comparison to other

					trials)
LIPID 2002(20)	9014	Patients with previous myocardial	6 years	pravastatin 40 mg	ALLOCATION CONC:
		infarction or unstable angina and a		versus	Adequate
		baseline plasma cholesterol concentration	(+ open-label	placebo	RANDO:
		of 4·0–7·0 mmol/L	pravastatin for 2		Adequate
			more years)		BLINDING :
			(3766 (86%) of		Participants/personnel/assessors?
			those assigned		Adequate
			placebo and 3914		
			(88%) assigned		FOLLOW-UP: >99%
			pravastatin		ITT:yes
			agreed to take		FUNDING:?
			open-label		
			pravastatin)		
LIPS 2002(21)	1677	patients (aged 18-80 years) with stable or	median follow-up	fluvastatin, 80 mg/d (n = 844),	ALLOCATION CONC:
		unstable angina or silent ischemia	was 3.9 years.	or matching placebo (n = 833)	Adequate
Randomized, double-		following successful completion of their			RANDO:
blind, placebo-		first PCI who had baseline total		Main Outcome Measure:	Adequate
controlled trial		cholesterol levels between 135 and 270		Survival time free of major	BLINDING :
		mg/dL (3.5-7.0 mmol/L), with fasting		adverse cardiac events	Adequate
77 referral centers in		triglyceride levels of less than 400 mg/dL		(MACE), defined as cardiac	
Europe, Canada, and		(4.5 mmol/L)		death, nonfatal myocardial	FOLLOW-UP: >90% completed trial
Brazil.				infarction, or reintervention	ITT:yes
				procedure, compared	FUNDING:Novartis
				between the treatment and placebo groups	"patients whose total cholesterol exceeded 7.2 mmol Γ^1 for 3 months or
					longer could discontinue study
					therapy at the investigator's
					discretion and receive an open-label
					statin or other lipid-lowering therapy.
					As a result, 10.7% of patients in the
					treatment arm and 24% in the
					placebo arm started taking other
					lipid-lowering medications (mainly
					statins) before their first major
					adverse cardiac event or completion

					of follow-up."
					"anecdotal evidence that many patients were aware of their total cholesterol levels as these had been tested by primary care physicians who were not involved in LIPS; as a result, these patients were no longer blinded to their treatment allocation"
MEGA 2006(22)	7832	Asian patients with	Mean follow-up	Diet	ALLOCATION CONC: Adequate
		hypercholesterolaemia (total cholesterol	was 5·3 years	versus	RANDO: Adequate
prospective,		5.69–6.98 mmol/L) and no history of		Diet +10–20 mg pravastatin	BLINDING : assessors Adequate
randomised, open-		coronary heart disease or stroke	The follow-up		
labelled, blinded study			period was		FOLLOW-UP: 87.3%
labelled, billaca stady			initially scheduled		At the end of study, 471 and 522
			for 5 years;		patients had withdrawn, died, or been
			however, on the		lost to follow-up in the diet and diet
			basis of		plus pravastatin groups, respectively
			recommendations		ITT:yes
			from the data and		
			safety monitoring		FUNDING: Japanese Ministry of
			committee, the		Health, Labor and Welfare and
			study was		Sankyo Co Ltd, Tokyo
			continued for an		
			additional 5 years		The primary endpoint was the first
			to increase the		occurrence of coronary heart disease
			number of		
			events.		
Post-CABG 1997(23)	1351	Patients who had undergone bypass	Angiography was	Aggressive lowering versus	ALLOCATION CONC: unclear
		surgery 1 to 11 years before base line and	repeated an	moderate lowering of	RANDO: unclear
RCT		who had an LDL cholesterol level between	average of 4.3	cholesterol:	BLINDING : no blinding reported
		130 and 175 mg per deciliter and at least	years after base	Lovastatin 40mg or higher (+/-	
		one patent vein graft as seen on	line.	cholestyramin) (target	FOLLOW-UP: 98% clinical follow-up
		angiography.		LDL<85mg/dl)	ITT:yes
			The primary	versus	FUNDING: National Heart, Lung, and
			angiographic	Lovastatin 2.5mg or higher	Blood Institute and by Merck &

			outcome was the mean percentage per patient of grafts with a decrease of 0.6 mm or more in lumen diameter.	(target LDL <140mg/dl) two-by-two factorial design to assign patients to aggressive or moderate treatment to lower LDL cholesterol levels (with lovastatin and, if needed, cholestyramine) and to treatment with warfarin or placebo	Company. The primary angiographic outcome was the mean percentage per patient of grafts with a decrease of 0.6 mm or more in lumen diameter.
PROSPER 2002(24) randomised controlled trial	5804	5804 men (n=2804) and women (n=3000) aged 70–82 years with a history of, or risk factors for, vascular disease Baseline cholesterol concentrations ranged from 4.0 mmol/L to 9.0 mmol/L.	Follow-up was 3·2 years on average	pravastatin 40 mg versus placebo	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Adequate FOLLOW-UP: 25% did not complete trial (due to adverse event, death, refusal or lost) 13% refusal or lost to follow-up ITT:yes FUNDING: Bristol- Myers Squibb, USA. Primary endpoint was a composite of coronary death, non-fatal myocardial infarction, and fatal or non-fatal stroke
SSSS 1994(25) randomised double- blind trial	4444	Patients with angina pectoris or previous myocardial infarction and serum cholesterol 5·5-8·0 mmol/L on a lipid- lowering diet	5·4 years median follow-up period	simvastatin versus placebo	ALLOCATION CONC: /unclear RANDO: unclear BLINDING : Participants/personnel/assessors

					unclear
					FOLLOW-UP: note 2 week placebo run in FUNDING:Merck
WOSCOPS 1995(26)	6595	men with hypercholesterolaemia based in	4.9 years	40 mg pravastatin	ALLOCATION CONC:
		Scotland aged 45-64 (mean age 55). <		Vs	Adequate RANDO:
RCT, double blind		10% with clinical evidence of CVD		Placebo	Adequate
					BLINDING :
				Primary outcome: composite	Participants/personnel/assessors
				of non-fatal MI andCHD	Adequate
				death. Single outcomes	FOLLOW-UP:
				included	30% drop-outs reported
				totalmortality, fatal CVD	ITT: yes
				events, cholesterol,	FUNDING:
				revascularisations, non-	unclear risk (funded by pharm
				fatalMI and CHD	industry)
				death and adverse events	

statin high dose versus	statin lov	w dose (5 trials)			
A to Z 2004(27)	4497	Patients with acute coronary syndrome	Follow-up was for	40 mg/d of simvastatin for 1	ALLOCATION CONC:
International,		(ACS)	at least 6 months	month followed by 80 mg/d	Adequate
randomized, double-		Age, mean, years: 61	and up to 24	vs	RANDO:
blind trial		Men, %: 76	months	placebo for 4 months	Adequate
		Prior CHD, %: 100		followed by 20 mg/d of	BLINDING : double blinded
		Diabetes, %: 24		simvastatin	
		Hypertension, %: 50			FOLLOW-UP: adequate reporting
		Current smokers, %: 41			33% discontinued prematurely
					3% lost to follow-up or follow-up too
		Baseline, mean mg/dL (change):			short for primary endpoints
		LDL:111 (-37)			
		HDL: 39 (-0.7)			ITT:yes
					FUNDING: Merck

					note: lower start dose
					The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, readmission for ACS, and stroke.
IDEAL 2005(28) prospective, randomized, open- label, blinded end- point evaluation trial conducted at 190 ambulatory cardiology care and specialist practices in northern Europe	8888	Patients aged 80 years or younger with a history of acute MI Age, mean, years:62 Men, %:81 Prior CHD, %: 100 Diabetes, %:12 Hypertension, %:33 Current smokers, %:21 Baseline, mean mg/dL (change): LDL:121 (-22) HDL:46 (-0.5)	Median follow-up of 4.8 years	high dose of atorvastatin (80 mg/d), versus usual-dose simvastatin (20 mg/d)	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : endpoint-evaluation FOLLOW-UP: <1% lost to follow-up ITT:yes FUNDING: Pfizer note: no run-in Main Outcome Measure: Occurrence of a major coronary event, defined as coronary death, confirmed nonfatal acute MI, or cardiac arrest with resuscitation
PROVE-IT 2004(29) RCT, Noninferiority trial	4162	Patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days Age, mean, years:58 Men, %:78 Prior CHD, %: 100 Diabetes, %:18 Hypertension, %:50 Current smokers, %:37 Baseline, mean mg/dL (change): LDL:106 (-33)	Follow-up lasted 18 to 36 months (mean, 24)	40 mg of pravastatin daily (standard therapy) versus 80 mg of atorvastatin daily (intensive therapy)	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : double blind FOLLOW-UP: - The rates of discontinuation of treatment because of an adverse event or the patient's preference or for other reasons were 21.4 percent in the pravastatin

		HDL:39 (0.65)			group and 22.8 percent in the atorvastatin group at one year (P=0.30) and 33.0 percent and 30.4 percent, respectively, at two years (P=0.11). - 0.2% lost to follow-up ITT:yes FUNDING: ? note: no run-in The primary end point was a composite of death from any cause, myocardial infarction, documented unstable angina requiring rehospitalization, revascularization (performed at least 30 days after randomization), and stroke
SEARCH 2010(30) double-blind randomised trial	12064	Men and women aged 18-80 years with a history of myocardial infarction, were either currently on or had clear indication for statin therapy, and had a total cholesterol concentration of at least 3.5 mmol/L if already on a statin or 4.5 mmol/L if not Age, mean, years: - Men, %:83 Prior CHD, %: 100 Diabetes, %:- Hypertension, %:- Current smokers, %:- Baseline, mean mg/dL (change): LDL:97 (-14)	Mean follow-up of 6·7 (SD 1·5) years	80 mg simvastatin versus 20 mg simvastatin	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : yes FOLLOW-UP: 37% not eligible after run-in phase 2% lost to follow-up 30% stopping before end of study ITT:yes FUNDING: Merck The primary endpoint was major vascular events, defined as coronary

		HDL:39 (-)			death, myocardial infarction, stroke, or arterial revascularisation
TNT 2005(31)	10001	patients with clinically evident CHD and	median of 4.9	10 mg atorvastatin	ALLOCATION CONC:
		LDL cholesterol levels of less than 130 mg	years.	versus	unclear
double blind RCT		per deciliter (3.4 mmol per liter)	,	80 mg atorvastatin	RANDO:
				C	unclear
		Age, mean, years:61			BLINDING : 'double blind', blinded
		Men, %:81			assessors
		Prior CHD, %: 100			
		Diabetes, %:15			FOLLOW-UP:
		Hypertension, %:54			35% excluded after run-in (mainly due
		Current smokers, %:13			to not meeting randomization criteria) 3.6% of excluded run-in patients
		Baseline, mean mg/dL (change):			had ischemic event
		LDL:98 (-22)			3.6% of excluded run-in patients
		HDL:47 (0)			had adverse events
					<1% lost to follow-up
					ITT:yes
					FUNDING: Industry-funded
					note: washout period of one to eight
					weeks
					eight-week run-in period of open-
					label treatment with 10 mg of
					atorvastatin per day.
					The primary end point was the
					occurrence of a first major
					cardiovascular event, defined as death from CHD, nonfatal non-
					procedure-related myocardial
					infarction, resuscitation after cardiac
					arrest, or fatal or nonfatal stroke.

Estimated 5-year risk of	Total cholesterol	LDL cholesterol	HDL cholesterol	Triglycerides
major vascular event	(mmol/L*)	(mmol/L*)	(mmol/L*)	(mmol/L*)
Statin vs. Control				
<5%	-0.94	-0.88	0.034	-0.19
≥5%, <10%	-1.08	-0.96	0.031	-0.25
≥10%, <20%	-1.14	-0.99	0.045	-0.27
≥20%, <30%	-1.26	-1.10	0.032	-0.24
≥30%	-1.31	-1.21	0.034	-0.23
Subtotal (22 trials)	-1.22	-1.08	0.038	-0.26
More vs. Less statin				
≥10%, <20%†	-0.52	-0.44	0.006	-0.19
≥20%, <30%	-0.65	-0.53	-0.011	-0.24
≥30%	-0.70	-0.58	-0.013	-0.30
Subtotal (5 trials)	-0.61	-0.51	-0.005	-0.23

Webtable 3: Mean difference in plasma lipid concentrations at 1 year in participants at different levels of risk

LDL= low-density lipoprotein cholesterol. HDL= high-density lipoprotein cholesterol.

* To convert values from mmol/L to mg/dL, divide triglycerides by 0.01129 and other lipids by 0.02586.

Estimating the five year risk of major vascular event among the 174,149 participants in 27 randomised trials of statin therapy

The 5-year risk of a major vascular event (first non-fatal myocardial infarction, coronary death, stroke or coronary revascularisation procedure) was estimated using separate Cox proportional hazards models for the 67,000 patients allocated the control regimen in the 22 trials of statin versus control (model 1) and the 20,000 patients allocated the less intensive statin regimen in the 5 trials of more versus less statin (model 2). The results from these two regression models were then applied to all patients (including those in the active treatment arms), as described below.

For patient *i* in study *j* with allocated treatment *k* (where k=0 corresponds to the control/less statin treatment and k=1 corresponds to the statin/more statin treatment), the hazard function in the control/less statin group was modelled by the regression equation:

$$h_{ij0}(t) = h_0(t)exp\left(\alpha + \beta_j + \gamma \left(x_{ij0} - \overline{x}_{,j0} \right) + \delta \left(w_{ij0} \right) + \theta(z_j(t)) \right)$$

where $h_0(t)$ is the baseline hazard function, α is an overall intercept term, β_j represents the effect of study j relative to the Heart Protection Study for model 1 or the Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine for model 2 (see Webtable 1, terms C), γ represents a vector of log hazard ratios corresponding to the patient's set of baseline characteristics \mathbf{x}_{ij0} (centred around study means $\overline{\mathbf{x}}_{.j0}$ where appropriate: see Webtable 1, terms A), $\boldsymbol{\delta}$ represents a vector of log hazard ratios corresponding to interactions \mathbf{w}_{ij0} between various baseline characteristics (see Webtable 1, terms B), and $\boldsymbol{\theta}$ represents a vector of log hazard ratios corresponding to trial-specific time dependent effects $\mathbf{z}_j(t)$ (defined for initial six-monthly time periods: see Webtable 1, terms D).

For each of the two regression models, the baseline characteristics \mathbf{x}_{ij} and interactions \mathbf{w}_{ij} were selected using backward elimination, with factors remaining in the model if they were statistically significant at the 1% level (age and sex were to be included in both models irrespective of statistical significance). The baseline characteristics included in the final models are shown in Webtable 1. The trial-specific time dependent effects $\mathbf{z}_j(t)$ were defined for initial six-monthly time periods and a backwards elimination strategy with statistical significance at 1% was employed to select the effects remaining in the models.

The Cox models provide estimates of log hazard ratios, but provide no direct estimate of the baseline hazard $h_o(t)$. However, an estimate of the cumulative hazard function $H_o(t)$ can be recovered by estimation of baseline hazard contributions at failure times using the Kalbfleisch and Prentice method and, from that, an estimate of the baseline cumulative survival $S_0(t) = \exp(-H_0(t))$ can be made.

Separating study participants according to baseline 5-year major vascular event risk

The predicted 5-year risk of a major vascular event for all patients was estimated by:

$$P_{ijk}(t) = 1 - S_0(t)^{exp (\alpha + \beta_j + \gamma(x_{ijk} - \bar{x}_{.j0}) + \delta(w_{ijk}) + \theta(z_j(t)))} \quad \text{at t=5 years}$$

Patients with missing baseline characteristics employed in the risk models were excluded from the estimation of models 1 and 2, but their values were imputed for the purpose of predicting 5-year risk of a major vascular event. Occasional missing age, gender, treatment for hypertension were imputed using study-specific mean (age) or median (gender, treatment for hypertension). Missing data for LDL-C (1.7%), HDL-C (0.7%), blood pressure (0.4%) and creatinine (1.4%) were imputed using study-specific mean values by age, gender and treatment for hypertension.

Trial participants were categorised into one of five baseline categories of 5-year risk: <5%; 5 to <10%; 10 to <20%; 20 to <30%; and 30% or larger. The proportionate and absolute effects of allocation to statin or more statin intervention on specific endpoints was then estimated separately within each of these subgroups (as described in the main statistical methods section).

Study	Duration (years)*	Observed MVEs (%) (95% CI)†	Average predicted MVEs (%)
Statin vs. Control			
SSSS	5	33.8% (31.8% - 35.8%)	33.7%
WOSCOPS	5	10.0% ($8.9%$ - $11.1%$)	10.1%
CARE	5	27.3% (25.3% - 29.3%)	27.2%
Post-CABG	5	27.5% (25.5% - 29.5%) 22.9% (15.5% - 30.4%)	17.4%
AFCAPS/TexCAPS	5	5.4% (4.6% - 6.2%)	5.7%
	5	22.4% ($4.6% - 6.2%$)	22.9%
LIPID			
GISSI-P	2	11.1% ($9.7% - 12.4%$)	10.9%
HPS	5	19.5% (18.7% - 20.3%)	19.5%
ASCOT-LLA	4	6.9% ($6.1% - 7.8%$)	7.3%
PROSPER	4	19.3% (17.6% - 21.0%)	20.2%
CARDS	5	10.9% (8.9% - 12.9%)	11.4%
ALERT	5	12.5% (10.4% - 14.6%)	12.8%
ALLHAT-LLT	5	16.1% (15.0% - 17.2%)	15.8%
LIPS	4	27.3% (23.9% - 30.7%)	26.8%
ALLIANCE	5	28.0% (25.1% - 30.9%)	27.6%
ASPEN	4	12.3% (10.4% - 14.3%)	12.5%
4D	5	39.9% (33.6% - 46.2%)	39.4%
MEGA	5	3.2% (2.7% - 3.8%)	3.2%
JUPITER	5	5.3% (4.2% - 6.5%)	4.9%
GISSI-HF	5	9.4% (7.9% - 10.8%)	10.6%
AURORA	5	33.9% (30.7% - 37.1%)	34.7%
CORONA	3	15.1% (13.5% - 16.7%)	15.3%
More vs. Less statin			
A to Z	2	13.3% (11.8% - 14.8%)	13.3%
PROVE-IT	2	22.6% (20.7% - 24.5%)	22.7%
TNT	5	23.4% (22.2% - 24.6%)	23.4%
IDEAL	5	25.8% (24.4% - 27.1%)	25.7%
SEARCH	5	17.1% (16.2% - 18.1%)	17.2%
Risk categories			
<5%	5	2.8% (2.4% - 3.2%)	3.4%
≥5%, <10%	5	7.4% (6.9% - 7.9%)	7.3%
≥10%, <20%	5	15.9% (15.5% - 16.4%)	15.4%
≥20%, <30%	5	24.7% (24.0% - 25.3%)	24.3%
≥30%	5	38.1% (37.0% - 39.2%)	38.1%

Webtable 2: Comparison of the observed (95% CI) and predicted rates of major vascular events in participating trials

MVE= major vascular event.

*Duration over which rates of major vascular events compared: 5 years or the latest year with available Kaplan-Meier estimate of MVE within 50 days from end of that year.

†Estimated using Kaplan-Meier survival methods among participants allocated to the control or less statin arm, respectively.

4.1.1.2 Summary and conclusions: CTT 2012. Individual patient data meta-analysis

Statin or high dose statin versus placebo or low dose statin: Cholesterol Treatment Trialist

The following results are from a meta-analysis based on individual patient data, that includes all trials that were published or conducted after 1995. Included trials compare statin versus placebo or high dose statin versus a low dose statin.

The description of the search strategy does not specify how the literature was searched to find all eligible trials. The authors (Cholesterol Treatment Trialists: CTT) have made previous publications using the same methodology.

Endpoints are reported for the overall population, and also in subgroups based on baseline 5-year risk of (first) major vascular event (MVE; Major vascular event= major coronary events, strokes, or coronary revascularisations).

It is unclear why coronary revascularisations were included as part of this definition.

Five risk categories were defined: <5%; $\ge5\%$ to <10%; $\ge10\%$ to <20%; $\ge20\%$ to <30% and $\ge30\%$ risk of a major vascular event in the next 5 years.

To estimate for each individual patient this 5-year risk of MVE, the authors developed a statistical calculation method, based on the event rate in the control group of the studies, the patient's baseline characteristics and the factor 'time'.

To check the accuracy of this calculation model, they compare the estimated MVEs to the observed MVEs in the different trials. They find that their model adequately predicts MVE events.

The analysis of subgroups at different MVE risk was not stated in the original protocol of the CTT. It may therefor be prudent to consider these results as hypothesis-generating.

The authors report all endpoints adjusted for a chosen LDL response of 1mmol/L reduction. This makes interpretation more difficult. Not all patients in the included trials necessarily reached this 1 mmol/L reduction. (particularly in the high dose versus low dose trials).

Besides, it is impossible to predict the LDL decrease from statin therapy in an individual patient.

Unfortunately, the majority of the reported analyses are for both the placebo-controlled trials and for the higher statin dose versus lower statin dose combined. This limits our interpretation of the results. Only in the appendices do we find separate analyses for the 22 placebo-controlled trials and the 5 trials that compare a higher dose to a lower dose.

In their previous publication, the authors did report separately on placebo-controlled trials and high dose versus low dose trials for all endpoints, and reported the unadjusted relative risks as well as the relative risk per mmol/L reduction in LDL-C. This is a more preferable approach.

Where possible, we have chosen to report the results of the separate analyses for the placebo-controlled comparison. For the endpoints where these data were not available, we will report the results of the combined analysis (placebo-controlled trials and high-dose versus low-dose statin trials together).

4.1.1.2.1 Statin versus placebo

Statin versus placeb	o in an overall popu	lation and in subgroups according	to baseline risk
Bibliography: Individ	ual patient data met	ta-analysis: CTT 2012(4)	
Outcomes	N° of participants (studies) Follow up	Results RR (CI) per 1.0 mmol/L reduction in LDL	Quality of the evidence (GRADE)
Major vascular event: major coronary events (ie, non-fatal myocardial infarction or coronary death), strokes, or coronary	134 537 (22 studies)	HR= 0.80 (0.78 – 0.82) SS in favour of statin SS in all 5-y MVE risk category subgroups	Not applied
revascularisations Major coronary	134 537	HR= 0.76 (0.73 – 0.79)	Not applied
event: non-fatal myocardial infarction or coronary death	(22 studies)	SS in favour of statin SS in all 5-y MVE risk category subgroups	
Any stroke	134 537 (22 studies)	0.85 (0.81 – 0.90) SS in favour of statin SS in these subgroups: ≥5% to <10% MVE risk ≥10% to <20% MVE risk	Not applied

Statin versus placebo

Individual patient data from 22 trials were included.

There is a statistically significant reduction* in major vascular events in the population taking a statin compared to placebo. This reduction is statistically significant across all risk groups. *GRADE: not applied*

There is a statistically significant reduction* in major coronary events in the population taking a statin compared to placebo. This reduction is statistically significant across all risk groups. *GRADE: not applied*

There is a statistically significant reduction* in total stroke events in the population taking a statin compared to placebo. However, this reduction is NOT significant in subgroups with risk stratification <5% and \geq 20%. *GRADE: not applied*

The CTT did not report on frequent adverse events.

* per 1.0 mmol/L reduction in LDL-cholesterol

4.1.1.2.2 Statin or high dose statin versus placebo or low dose statin

Bibliography: Individ	ual patient data met	ta-analysis: CTT 2012(4)	
Outcomes	N° of participants (studies) Follow up	Results RR (CI) per 1·0 mmol/L reduction in LDL	Quality of the evidence (GRADE)
All-cause mortality	174149 (27 studies)	Overall $HR= 0.91 (0.88 - 0.93)$ SS in favour of statin 5γ -MVE risk subgroupsSS in risk groups $\geq 10\%$ to $<20\%$; $\geq 20\%$ to $<30\%$; $\geq 30\%$ Patients without vascular disease: $HR= 0.91 (0.85 - 0.97)$ SS in favour of statinSS in MVE-risk group $\geq 5\%$ to $<10\%$	Not applied
		Participants with vascular disease: 0.90 (0.87 – 0.93) SS in favour of statin SS in MVE-risk group ≥20% to <30%; ≥30%	
Any vascular death	174149 (27 studies)	Overall HR= 0.88 (0.84–0.91) SS in favour of statin <u>5y-MVE risk subgroups</u> SS in risk groups ≥10% to <20%; ≥20% to <30%; ≥30%	Not applied
		Patients without vascular disease: HR= 0.85 (0.77–0.95) SS in favour of statin NS in all 5y-MVE subgroups Participants with vascular disease:	
		HR=0.88 (0.84–0.92) SS in favour of statin SS in MVE-risk group ≥20% to <30%; ≥30%	

Statin versus placebo, or high dose statin versus low dose statin.

Individual patient data from 27 trials were included.

There is a statistically significant reduction^{*} in all-cause mortality with statin treatment versus placebo or lower dose statin. A statistically significant decrease in all-cause mortality is also observed in the 3 highest MVE risk categories, but not in the 2 lowest MVE risk categories.

In patients without vascular disease, all-cause mortality is also significantly lower with statin therapy compared to placebo or lower dose statin. When this population is divided in subgroups according to 5y MVE risk, only in the risk category of \geq 5% to <10% do we find a statistically significant difference.

In patients with vascular disease, all-cause mortality is significantly lower with statin therapy compared to placebo or lower dose statin. When this population is divided in subgroups according to 5y MVE risk, a statistically significant reduction in all-cause mortality is observed only in the 2 highest risk groups.

GRADE: not applied

There is a statistically significant reduction* in vascular death with statin therapy compared to placebo or lower dose statin in the overall study population. A statistically significant decrease in vascular death is also observed in the 3 highest MVE risk categories, but not in the 2 lowest MVE risk categories.

In patients without vascular disease, vascular death is also significantly lower with statin therapy compared to placebo or lower dose statin. When this population is divided in subgroups according to 5y MVE risk, no statistically significant difference in all-cause mortality rates is observed in any risk group.

In patients with vascular disease, vascular death is significantly lower with statin therapy compared to placebo or lower dose statin. When this population is divided in subgroups according to 5y MVE risk, a statistically significant reduction in all-cause mortality is observed only in the 2 highest risk groups.

GRADE: not applied

* per 1.0 mmol/L reduction in LDL-cholesterol

4.1.2 Statin versus placebo in primary prevention

4.1.2.1 Evidence tables. Taylor 2013

Meta-analysis

Inclusion criteria

- RCT
- >= 12 m treatment, FU>= 6m
- study population to have less than or equal to 10% of a previous history of CVD (this would include previous angina, myocardial infarction and/or stroke). Trials in which statins were used to treat or control chronic conditions (e.g. Alzheimer's disease, rheumatoid arthritis, renal disease, macular degeneration, aortic stenosis) were excluded.
- Comparison: statins vs placebo or usual care
- Concomitant interventions were accepted if given to both arms of the study. Adjuvant treatments with one additional drug where a patient developed excessively high lipids during the trial were accepted.

Search strategy : different databases and reference lists

Assessment of quality of included trials: yes, Cochrane handbook of systematic reviews

ITT analysis: yes

Other methodological remarks:

Trial data were considered to be heterogeneous where the I2 statistic was > 50%.

For analysis: the fixed-effect method was used unless data were heterogenous in which case they used the random-effects model. (This is methodologically unsound.

In our opinion, a random effect model should have been used)

The authors state:

Excluding the five trials that included up to 10%participants with clinical evidence of CVD (none of the trials published the subgroup without any evidence of CVD) demonstrates very similar findings: total mortality RR 0.80 (95% CI 0.70 to 0.91) versus RR(??) 0.86 (0.79 to 0.94) in all trials; total CHD events RR 0.68 (0.59 to 0.77) versus 0.73 (0.67 to 0.80) in all trials; adverse events RR 0.99 (0.96 to 1.02) versus 1.00 (0.97 to 1.03) in all trials.

Sensitivity analysis suggested that early stopping of trials and size of trial did not influence the overall results.

Ref	Comparison	N/n	Outcomes	Result
Taylor	Statins vs	N= 13	All-cause mortality	Statin: 1077/24.408
2013(32)	placebo or	n= 48.060		No statin:1223/23.652
	usual care	(ACAPS 1994, Adult Japanese		OR: 0.86 [95%Cl 0.79 to 0.94]
Design:		MEGA Study,		NNT for 5y: 96 [95%Cl 64 to 244]
SR+MA		AFCAPS/TexCAPS 1998,		SS
		ASPEN 2006, Bone 2007,		
Search date:		CARDS 2008, CERDIA 2004,		
(jan-2012)		JUPITER 2008, KAPS 1995,		
()0/		METEOR 2010, PHYLLIS 2004,		
N= 18		PREVEND IT 2004, WOSCOPS)		(t+-t) 020/24 247
n= 56.934		N= 14	Total number of CHD events	Statin: 820/24.217
11- 50.554		n= 48.049		No statin: 1114/23.832
		(ACAPS 1994, Adult Japanese		RR: 0.73 (95% CI 0.67 to 0.80)
		MEGA Study, AFCAPS/TexCAPS 1998,		NNT for 5y: 56 (95%Cl 46 to 75)
		ASPEN 2006, CAIUS 1996,		SS
		CARDS 2008, CERDIA 2004,		
		HYRIM 2007, JUPITER 2008,		
		KAPS 1995, METEOR 2010,		
		PHYLLIS 2004, PREVEND IT		
		2004, WOSCOPS)		
		N=10	Fatal CHD events	Statin: 251/23.019 (1.1%)
		n= 46.094		No statin: 306/23.075 (1.3%)
		(ACAPS 1994, Adult Japanese		RR: 0.82 (95% CI 0.70 to 0.96)
		MEGA Study,		SS
		AFCAPS/TexCAPS 1998,		
		ASPEN 2006, CAIUS 1996,		
		CARDS 2008, JUPITER 2008,		
		KAPS 1995, PREVEND IT		
		2004, WOSCOPS)		
		N= 9	Total number of CVD events	Statin: 1103/11.892 (9.3%)
		n= 23.805		No statin: 1455/11.913 (12.2%)
		(ACAPS 1994, Adult Japanese		RR: 0.75 (95% Cl 0.70 to 0.81)
		MEGA Study, CAIUS 1996,		SS
		CARDS 2008, CERDIA 2004,		
		HYRIM 2007, MRC/BHF heart		
		Protection, PREVEND IT 2004,		

WOSCOPS)		
N= 5 n= 34.012 (ACAPS 1994, Adult Japanese MEGA Study, JUPITER 2008, PREVEND IT 2004, WOSCOPS)	Fatal CVD events	Statin: 295/16.962 (17.4%) No statin: 355/17.050 (20.8%) RR: 0.83 (95% CI 0.72 to 0.96) SS
N= 10 n= 40.295 (ACAPS 1994, Adult Japanese MEGA Study, ASPEN 2006, Bone 2007, CARDS 2008, JUPITER 2008, KAPS 1995, PHYLLIS 2004, PREVEND IT 2004, WOSCOPS)	Total number of stroke events	Statin: 345/20.302 (17%) No statin: 442/19.993 (22%) RR: 0.78 (95%Cl 0.68 to 0.89) SS
N=3 n= 27.238 (CARDS 2008, JUPITER 2008, WOSCOPS-)	Fatal stroke events	Statin: 57/13.632 (0.4%) No statin: 50/13.606 (0.4%) RR: 0.63 (95%Cl 0.18 to 2.23) NS
N= 4 n= 35.254 (Adult Japanese MEGA Study, AFCAPS/TexCAPS 1998, CARDS 2008, JUPITER 2008)	Combined endpoint (fatal and non-fatal CHD, CHD and stroke events)	Statin: 438/17.591 (2.4%) No statin: 678/17.663 (3.8%) RR: 0.65 (95% CI 0.58 to 0.73) SS
N= 16 n= 41.380 (ACAPS 1994, Adult Japanese MEGA Study, ASPEN 2006, CAIUS 1996, CARDS 2008, CELL A 1996, CELL B 1996, CERDIA 2004, Derosa 2003, HYRIM 2007, JUPITER 2008, KAPS 1995, METEOR 2010, PHYLLIS 2004, PREVEND IT 2004, WOSCOPS)	LDL cholesterol	Net difference -1.00 (95% Cl -1.16 to -0.85 mmol/L)

N= 7 n= 42.403 (Adult Japanese MEGA Study, AFCAPS/TexCAPS 1998, CAIUS 1996, CARDS 2008, JUPITER 2008, KAPS 1995, WOSCOPS)N=2 n=25634 Adult Japanese MEGA study 1998, Jupiter 2008	Revascularisation; Number of study participants who developed haemorrhagic stroke	Statin: 286/ 21.166 (1.4%) No statin: 461/21.237 (2.2%) RR: 0.62 (95%CI 0.54 to 0.72) SS OR= 0.97 (0.54-1.75) NS
N= 11 n= 38.739 (AFCAPS/TexCAPS 1998, ASPEN 2006, Bone 2007, CAIUS 1996, CARDS 2008, CERDIA 2004, JUPITER 2008, KAPS 1995, METEOR 2010, PHYLLIS 2004, WOSCOPS)	Number of study participants who developed cancer	Statin: 1180/19.789 (5.96%) No statin: 1075/18.950 (5.67%) RR: 1.01 (95%CI 0.93 to 1.10) NS
N= 9 n= 37.938 (AFCAPS/TexCAPS 1998, ASPEN 2006, Bone 2007, CARDS 2008, CERDIA 2004, JUPITER 2008, KAPS 1995, METEOR 2010, WOSCOPS)	Number of study participants who developed myalgia or muscle pain	Statin: 1847/19.396 (9.52%) No statin: 1704/18.542 (9.18%) RR: 1.03 (95%Cl 0.97 to 1.09) NS
N= 6 n= 38.468 (Adult Japanese MEGA Study, AFCAPS/TexCAPS 1998, ASPEN 2006, CARDS 2008, JUPITER 2008, METEOR 2010)	Number of study participants who developed rhabdomyolysis	Statin:3/19.410 (0.02%) No statin:3/19.058 (0.02%) RR: 1.00 (95%CI 0.23 to 4.38) NS
N= 2 n=24.407 (AFCAPS/TexCAPS 1998, JUPITER 2008)	Number of study participants who developed diabetes	Statin: 342/12.205 (2.8%) No statin: 290/12.202 (2.4%) RR: 1.18 (95%Cl 1.01 to 1.39) SS

N= 10	Number of study participants who had	Statin:476/20.420 (2.3%)
n= 40.094	elevated liver enzymes	No statin:472/19.674 (2.4%)
(ACAPS 1994, Adult Japanese		RR: 1.16 (95%CI 0.87 to 1.54)
MEGA Study,		NS
AFCAPS/TexCAPS 1998,		
ASPEN 2006, Bone 2007,		
CARDS 2008, CERDIA 2004,		
JUPITER 2008, KAPS 1995,		
METEOR 2010)		
N= 8	Treatment compliance	Statin: 16.438/21.207 (77%)
n= 41.712		No statin: 14.534/20.505 (70%)
(Adult Japanese MEGA Study,		RR: 1.08 (95%CI 0.98 to 1.18)
AFCAPS/TexCAPS 1998, Bone		NS
2007, JUPITER 2008, KAPS		
1995, METEOR 2010, ,		
PREVEND IT 2004, WOSCOPS)		

* Characteristics of included studies: see below

Ref + design	n	Population	Duratio	Comparison	Definition of	Methodology
			n		outcomes	
ACAPS 1994(33)	919	USA patients, mean age 62y, none	34	20 mg	Carotid	ALLOCATION CONC: unclear
		with any clinical evidence of CVD	months	lovastatin vs	atherosclerosis,	RANDO: Adequate
RCT 4x4 factorial				placebo	cholesterol, fatal +	BLINDING :
design		The study population was			non-fatal CHD	Participants/personnel/assessors
		men and women, 40 to 79 years old,		(treatment	events, stroke	Carers and patients were blinded
		with early carotid		arms with		FOLLOW-UP:
		atherosclerosis and moderately		warfarin also		no dropouts reported
		elevated LDL cholesterol		in study but		ITT:yes
				not reported		FUNDING:
				here)		unclear risk (funded by pharm industry)
						Run-in: 3- to 4-week run-in period during which
						they were given lovastatin placebo and open-
						labeled warfarin (1 mg/dL).
						"One purpose of the run-in phase was to
						identify and exclude participants who took <80%
						of their pills" (randomization after run-in)

						"Of the 960 persons returning for the baseline visit, only 4% (n=41) failed to qualify for randomization. The majority (33 of the 41) failed the run-in because of adherence problems."
Adult Japanese MEGA Study(22) RCT, single blind	7832	participants with hypercholesterolaemia based in Japan aged 40-70 (mean age 59) ; 32% men. None with any clinical evidence of CVD	5 years	10-20 mg pravastatin vs placebo; all participants got advice on diet	Primary: composite of major CVD events, sudden cardiac death, angina and revascularisation. Single outcomes included: all-cause mortality, total CVD events, fatal and nonfatal MI, stroke and TIA events, sudden cardiac death, angina and revascularisation, cholesterol, adverse events	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Inadequate; single blinded endpoint committee was blinded only because investigators stated that placebo-controlled trials are regarded with suspicion by Japanese participants FOLLOW-UP: 98 % in efficacy analysis ITT:yes FUNDING: low risk (funded by pharm industry) Selective reporting: high risk. Not all adverse events reported. We wrote to the authors asking for clarity regarding data on serious events. The authors responded saying they were unable to send the data
AFCAPS/TexCAPS 1998(6) RCT, double blind	6606	participants in Texas, USA; Average TC and LDL-C levels and below-averageHDL-C levels Lipid entry criteria(TC,4.65- 6.82mmol/L[180-264mg/dL];LDL- C,3.36-4.91 mmol/L [130-190 mg/dL]; HDL-C,≤ 1.16mmol/L [45mg/dL]for men or ≤1.22mmol/L [47 mg/dL] for women; and triglycerides, ≤4.52 mmol/L [400 mg/dL] mean age 58; 57.5% men; 89%Caucasian. None with any clinical evidence of CVD	5.2 years	20-40 mg lovastatin vs placebo; all participants received advice on diet	Primary: composite of fatal and non- fatal MI and fatal CHD events. Single outcomes included: all-cause mortality, fatal and non-fatal CVD + stroke events, heart failure and adverse events	ALLOCATION CONC: unclear RANDO: unclear BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: no dropouts reported ITT:yes FUNDING: unclear risk (funded by pharm industry) Run-in: Participants who met entrance criteria and completed a 12-week American Heart Association Step I diet run-in, including a 2-week placebo baseline run-in, were

						randomized. No information on how many people were excluded in this step. Trial was stopped prematurely. To be terminated when 320 participants had experienced primary outcome event. Stopped when 267 had done at 5.2 years
ASPEN 2006(11)	2410	participants with type 2 diabetes	2.4	10 mg	Primary: composite	ALLOCATION CONC:
		based in 16 developed countries with	years	atorvastatin	<u>of fatalMI, stroke,</u>	unclear
RCT, double blind		mean age 60;		Vs	sudden cardiac	RANDO:
		62.5% men; 84% Caucasian. <u>< 10%</u>		placebo;	<u>death, heart failure,</u>	unclear
		with clinical evidence of CVD			<u>CVD death</u> .	BLINDING :
					Single outcomes	Participants/personnel/assessors
					included: non-fatal	Adequate
					or silentMI +	FOLLOW-UP:
					stroke,	22% drop outs reported
					revascularisation,	ITT:yes
					resuscitated	Run-in: 6-week, single-blind,
					cardiac arrest, TIA,	placebo-baseline period, at the end of which
					unstable angina,	baseline values for vital signs and lipids were
					peripheral arterial	obtained and subjects were randomly assigned
					disease, Ischaemic	excluded if run-in compliance rate <80%
					heart failure	2901 patients received placebo run-in, of which
					and adverse events	490 (17%) excluded
						FUNDING:
Deres 2007/24)	626	Deat managements	?	Atomostotia	During a mut	unclear risk (funded by pharm industry) ALLOCATION CONC:
Bone 2007(34)	626	Post-menopausal women aged 40-75 years with dyslipidaemia and no	ŗ	Atorvastatin (10/20/40/80	Primary:	Adequate
RCT, double blind		history of CHD or diabetes. None with		(10/20/40/80 mg/day)	Percentage change in lumbar spine	RANDO:
		any clinical evidence of CVD		Vs	bone marrow	Adequate
				Placebo	density Seconday:	BLINDING :
					Percentage	Participants/personnel/assessors
				All patients	change in femoral	Unclear; states double blind but only reports that
				were	neck etc BMD by	the participants were blinded to intervention
				instructed	DXA. other; adverse	FOLLOW-UP:
				to be on NCEP	events	5% dropped out

				ATP III diet		ITT:yes FUNDING: unclear risk (funded by pharm industry)
CAIUS 1996(35)	305	participants with hypercholesterolaemia based in Italy	3 years	40 mg pravastatin	Slope of carotid artery, fatal and	ALLOCATION CONC: Adequate
RCT, double blind		with mean age 55; 53%men.		Vs	non-fatal MI,	RANDO:
		None with any clinical evidence of		placebo	angina,	Adequate
		CVD			revascularisations,	BLINDING :
					cholesterol and	Participants/personnel/assessors
					adverse events	Unclear; double-blind: participants and
						personnel FOLLOW-UP:
						13% dropped out
						ITT:yes
						Run-in: 6 week placebo run-in + diet,
						randomized afterwards
						FUNDING:
						unclear risk (funded by pharm industry)
CARDS 2008(13)	2838	participants with diabetes (and at	3.9-4	10 mg	Primary: composite	ALLOCATION CONC:
		least one of the following:	years	atorvastatin,	of fatal and non-	Adequate
		retinopathy, albuminuria, current			fatal MI, acute CHD	RANDO:
		smoking, or hypertension) based in		all patients	death, resuscitated	Adequate
		UK and Ireland aged 40-75 years		were given	<u>cardiac</u>	BLINDING :
		(mean 61.7)		counselling on	arrest. Single	Participants/personnel/assessors
		; 68% men; 94.5% Caucasian. None		cessation of	outcomes included:	Adequate (triple blind part/pers/assess)
		with any clinical evidence of CVD		smoking	all-cause mortality, fatal and non-fatal	FOLLOW-UP:
					or silent MI	1% lost to follow up
					+ stroke,	ITT:yes
					revascularisation,	FUNDING:
					resuscitated cardiac	unclear risk (funded by pharm industry)
					arrest, total CVD	Run-in: excluded if during the baseline phase
					events, adverse	they had less than 80% compliance with placebo
					events	12% excluded from baseline phase
					and cholesterol	
						Trial stopped prematurely due to large

CELL A 1996(36) RCT, double blind, 2x3 factorial design CELL B 1996(36)	228	participants with hyperlipidaemia based in Sweden - at least two cardiovascular risk factors in addition to moderate primary hyperlipidaemia (total cholesterol of at least 6.50 mmol L) with a mean age of 49; 85% men, <10% had clinical evidence of CVD	18 months	10-40 mg pravastatin plus dietary advice vs placebo plus dietary advice	Main outcome measure: changes in the overall Framingham risk score. Fatal MI, cholesterol, quality of life.	beneficial treatment effect We calculated numbers needed to treat as the reciprocal of the absolute risk reduction for the primary endpoint for a treatment duration of 4 years (the median follow-up time) in 1000 patients. Treatment would be expected to prevent at least 37 major vascular events per 1000 such people treated for 4 years 27 patients would need to be treated for 4 years to prevent one event. However, incidence of first or subsequent major cardiovascular disease events was 31.8 per 1000 person-years at risk in the placebo group and 19.5 per 1000 person years at risk in the atorvastatin group. Therefore, allocation of 1000 such patients to atorvastatin 10 mg daily would be expected to be associated with 50 fewer first or subsequent major cardiovascular disease events over a 4-year period of follow-up ALLOCATION CONC: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: 14.5% dropped out ITT:yes Selective reporting: high risk: adverse event rates not provided for each group FUNDING: unclear risk (funded by pharm industry)
---	-----	---	--------------	---	--	--

RCT, double blind, 2x3 factorial design		based in Sweden - at least two cardiovascular risk factors in addition to moderate primary hyperlipidaemia (total cholesterol of at least 6.50 mmol L) with a mean age of 49; 85% men, <10% had clinical evidence of CVD	months	pravastatin plus dietary advice Vs placebo plus dietary advice	measure: changes in the overall Framingham risk score. Fatal MI, cholesterol, quality of life.	Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: 6% dropped out ITT:yes Selective reporting: unclear risk: CVD and adverse events rates not provided for each group FUNDING: unclear risk (funded by pharm industry)
CERDIA 2004(37) RCT, double blind	250	patients with type 2 Diabetes aged 30-80 years. None with any clinical evidence of CVD	2у	0.4 mg of Cerivastatin until 08/2001 then Simvastatin 20 mg	Primary outcome: Change inmean common carotid intimamedia thickness (IMT) after 24 months of intervention. Secondary outcomes: Changes in Mean + maximum IMT at 24 months, CVD events, amputation due to atherosclerotic disease, serum levels of LDL and total cholesterol	ALLOCATION CONC: unclear RANDO: Adequate BLINDING : Participants/personnel/assessors unclear; states double blind but only reported that participants were blinded to intervention FOLLOW-UP: 73 % in efficacy analysis ITT: no FUNDING: unclear risk (funded by pharm industry)
Derosa 2003(38)	47	participants with hypercholesterolaemia based in Italy	1 year	80 mg fluvastatin	Adverse events, cholesterol.	ALLOCATION CONC: Adequate

RCT, single blind		with a mean age of 51; 46% men. None with any clinical evidence of CVD		Vs Placebo all participants were given advice on diet and exercise		RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: no dropouts reported ITT:yes FUNDING: unclear risk (funded by pharm industry)
HYRIM 2007(39) RCT, double blind. 2x2 factorial design	287	men with drug-treated hypertension based in Norway aged 40-75 years (mean age 57). None with any clinical evidence of CVD	4 years	40 mg fluvastatin vs placebo (2x2 design also intensive lifestyle intervention vs usual care)	primary endpoint: development of intima media thickness in the common carotid artery	ALLOCATION CONC: unclear RANDO: unclear BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: not described and no drop outs reported ITT: unclear FUNDING: unclear risk (funded by pharm industry)
JUPITER 2008(19) RCT, double blind	17802	apparently healthy men and women with low-density lipoprotein (LDL) cholesterol levels of less than 130 mg per deciliter (3.4 mmol per liter) and high-sensitivity C-reactive protein levels of 2.0 mg per liter or higher >50 years. None with any clinical evidence of CVD	median 1.9 years	Rosuvastatin 20 mg daily.	- <u>Primary end point</u> (nonfatal <u>myocardial</u> infarction, nonfatal <u>stroke, arterial</u> <u>revascularization,</u> hospitalization for <u>unstable angina, or</u> <u>confirmed death</u> <u>from cardiovascular</u> <u>causes</u>) -adverse events	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: 100 % in efficacy analysis ITT: yes Stopped early with a median follow-up of 1.9 years.

METEOR 984 asymptomatic individuals 2y Rosuvastatin Primary:Mean of 12 ALLOCATION CONC:
2010(41) with either age (mean, 57 years) as 40 mg/ day. Carotid Intima Adequate

RCT		the only coronary heart disease risk factor or a 10-year FRS of less than 10%, modest CIMT thickening (1.2- <3.5 mm), and elevated LDL cholesterol (mean, 154 mg/dL) None with any clinical evidence of CVD			media (CIMT) thickness measurements. Secondary: CIMT measurements of left and right common carotid artery. Other relevant outcomes: adverse events, cholesterol levels	RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: 25-6% dropped out. ITT:yes FUNDING: unclear risk (funded by pharm industry)
MRC/BHF heart Protection(42) RCT, double blind, 2x2 factorial design	3982	total trial population: 6748 UK adults with PAD and 13,788 other high-risk participants (non-fasting blood total cholesterol concentrations of at least 3.5 mmol/L (135 mg/dL) were eligible provided they had a medical history of coronary disease, PAD, cerebrovascular disease, diabetes, or treated hypertension (if also male and aged at least 65 years).) patients with no prior CHD with diabetes mellitus as a subset of these 20,536 UK adults aged 40-80 years	5.3 years	40 mg simvastatin Vs placebo and, separately, using a two- by-two factorial design, antioxidant vitamins or matching placebo capsules	Composite of coronary and vascular events, stroke, revascularisations	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: not described ITT:not described Selective reporting: high risk: only CVD event results provided for this subgroup FUNDING: unclear risk (funded by pharm industry)
PHYLLIS 2004(43) RCT , double blind, 4x4 factorial	253	men and women aged 45-70 (mean age 58) with hypertension, hypercholesterolaemia and asymptomatic carotid atherosclerosis based in Italy. None with any clinical evidence of CVD	2.6 years	25 mg hydrochloroth iazide vs fosinopril and 40 mg pravastatin vs placebo	Primary outcomes: carotid atherosclerosis. Secondary outcomes: non- fatal MI, CVD death, stroke,	ALLOCATION CONC: unclear RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate

PREVEND IT 2004(44) RCT, double blind, 2x2 factorial	864	participants with microalbuminuria based in Holland aged 28-75 years (mean age 51); 64.5% men; 96% Caucasian. < 10% with clinical evidence of CVD	3.8 years	40 mg pravastatin Vs placebo (2x2 factorial: also fosinopril vs placebo)	cholesterol and cancer <u>primary end point</u> <u>was cardiovascular</u> <u>mortality and</u> <u>hospitalization for</u> <u>cardiovascular</u> <u>morbidity</u> Cardiovascular hospitalization was defined as	FOLLOW-UP: 20% dropouts reported Run-in: 6-week washout under triple placebo and American Heart Association low-lipid diet. ITT: yes FUNDING: unclear risk (funded by pharm industry) ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: 6% dropped out ITT: yes but confined to CVD events
WOSCOPS(26)	6595	men with hypercholesterolaemia	4.9	40 mg	hospitalization for documented (1) nonfatal myocardial infarction or myocardial ischemia, (2) heart failure, (3) peripheral vascular disease, and/or (4) cerebrovascular accident. Single outcomes included fatal CVD events, stroke, heart failure, non-fatal MI and cholesterol Primary outcome:	FUNDING: unclear risk (funded by pharm industry) Subjects treated with pravastatin had a 13% lower incidence of the primary end point than subjects in the placebo group (4.8% versus 5.6%, <i>P</i> _0.649;NOT STATISTICALLY SIGNIFICANT
11030013(20)	0000	(the LDL cholesterol level was at least	years	pravastatin	<u>composite of non-</u>	Adequate

RCT, double blind	155 mg per deciliter after dietary	Vs	<u>fatalMI</u>	RANDO:
	advice)	placebo	andCHDdeath.	Adequate
	based in Scotland aged 45-64 (mean			BLINDING :
	age 55).		Single outcomes	Participants/personnel/assessors
	(mean (± SD) plasma cholesterol level		included	Adequate
	of 272 ±23 mg per deciliter (7.0 ±0.6		total mortality,	FOLLOW-UP:
	mmol per liter)		fatal CVDevents,	30% drop-outs reported
	< 10% with clinical evidence of CVD		cholesterol,	ITT: yes
			revascularisations,	FUNDING:
			non-fatalMI and	unclear risk (funded by pharm industry)
			CHD	
			death and adverse	
			events	

Author's conclusions (Taylor 2013):

"Reductions in all-cause mortality, major vascular events and revascularisations were found with no excess of adverse events among people without evidence of CVD treated with statins"

The previous edition of this review (2011) also found a statistically significant benefit of statin versus control for all-cause mortality (RR 0,84; 95%BI: 0,73-0,96) and cardiovascular morbidity (RR 0,70; 95%BI: 0,61-0,79). At that time, the authors advised caution in prescribing statins for primary prevention to patients with low cardiovascular risk, given the limited benefit and unclear cost-effectiveness.

The authors now have changed their conclusions, possibly under pressure from the CTT publication, as can be suspected from the included correspondence. The authors conclude now that statin treatment reduceces total mortality and cardiovascular morbidity in patients without known cardiovascular disease. However, they still note their concerns that were the basis of the previous cautious approach: i.e. medicalization of a large part of the elderly population, lifelong treatment, unclear cost-effectieness, risk of undertreating high risk groups. The authors also point out that 47 % of the patients in the meta-analysis came from 3 trials that were stopped early due to a clear benefit in the intervention arm. This may lead to an overestimation of the treatment effect.

4.1.2.2 Summary and conclusions. Taylor 2013. Statins versus placebo or usual care in primary prevention

Statin versus placebo or usual care in patients without a history of cardiovascular disease						
Bibliography: Meta-a	analysis: Taylor 2013	(32)				
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)			
All-cause mortality	48060 (13 studies) 1.9y-5.2y	OR: 0.86 [95%Cl 0.79 to 0.94] SS in favour of statins Estimated NNT for 5y: 96 [95%Cl 64 to 244]	⊕⊕⊕⊖ MODERATE Study quality:- 1 for early stop and use of placebo run-in Consistency:OK Directness:very mixed population no points deducted but low applicability Imprecision:OK			
Fatal CVD events	34012 (5 studies) 1.9y-5y	RR: 0.83 (95% CI 0.72 to 0.96) SS in favour of statins	⊕⊕⊕⊖ MODERATE Study quality:- 1 for early stop and use of placebo run-in Consistency:OK Directness:very mixed population no points deducted but low applicability Imprecision:OK			
Total CVD events	23805 (9 studies) 3y-5.3y	RR: 0.75 (95% CI 0.70 to 0.81) SS in favour of statins	⊕⊕⊕⊖ MODERATE Study quality:- 1 for early stop and use of placebo run-in Consistency:OK Directness:very mixed population no points deducted but low applicability Imprecision:OK			
Total CHD events	48049 (14 studies) 1.9y-5y	RR: 0.73 (95% Cl 0.67 to 0.80) SS in favour of statins Estimated NNT for 5y: 56 (95%Cl 46 to 75)	⊕⊕⊕⊖ MODERATE Study quality:- 1 for early stop and use of placebo run-in Consistency:OK Directness:very mixed population no points deducted but low applicability Imprecision:OK			
Total stroke events	40295 (10 studies) 1.9y-5y	RR: 0.78 (95%Cl 0.68 to 0.89) SS in favour of statins	⊕ ⊕ ⊕ ⊖ MODERATE Study quality:- 1 for early stop and use of placebo run-in Consistency:OK Directness:very mixed population no points deducted but low applicability Imprecision:OK			
Haemorrhagic stroke	25634 (2 studies) 1.9y-5y	OR= 0.97 (0.54-1.75) NS	⊕ ⊕ ⊖ LOW Study quality:-1 incomplete reporting Consistency: OK Directness:-1 varying populations Imprecision: OK			
Cancer	38739 (11 studies)	RR: 1.01 (95%Cl 0.93 to 1.10) NS	⊕⊕⊖⊖ LOW Study quality:-1 for reporting issues			

	1.9y-5y		Consistency: OK Directness:-1 varying populations Imprecision: OK
Myalgia or muscle pain	37938 (9 studies) 1.9y-4.9y	RR: 1.03 (95%Cl 0.97 to 1.09) NS	 ⊕⊕⊖⊖ LOW Study quality:-1 for run in and reporting issues Consistency: OK Directness:-1 varying populations Imprecision: OK
Rhabdomyolysis	38468 (6 studies) 1.9y-5.2y	RR: 1.00 (95%Cl 0.23 to 4.38) NS	 Description Description Consistency: OK Directness:-1 varying populations Imprecision: OK
New onset diabetes	24407 (2 studies) 1.9y-2.8y	RR: 1.18 (95%Cl 1.01 to 1.39) SS	ODERATE Study quality:-1 for premature stopping Consistency: OK Directness:OK Imprecision: OK

This Cochrane systematic review and meta-analysis compared statins to placebo in primary prevention, i.e. in patients with no previous history of cardiovascular disease. However, trials in which there were ≤ 10% of patients with a history of cardiovascular disease, were also included. Populations of included trials were diverse: 14 trials included specific populations (diabetics, people with hypertension or hyperlipidaemia or microalbuminuria). Therefore, included populations could have a substantially different baseline risk of cardiovascular disease. Duration of included trials ranged from 1 year to 5.3 years.

The authors point out that 47% of the patients in this meta-analysis came from 3 trials that were stopped early due to a clear benefit in the intervention group. This may lead to an overestimation of the treatment effect.

An NNT for 5 years of treatment was reported for all-cause mortality and total CHD events. It is unclear how this NNT was calculated.

In this clinically heterogenous population, all-cause mortality is significantly lower with statins compared to placebo, as were fatal CVD events. *GRADE: MODERATE quality of evidence*

Total CVD events, total CHD events and total stroke events are also reduced with statins compared to placebo.

GRADE: MODERATE quality of evidence

The pooling of two trials shows no statistically significant difference in the risk of haemorrhagic stroke.

GRADE: LOW quality of evidence

No statistically significant difference between statins and placebo is observed in the incidence of cancer, myalgia or muscle pain and rhabdomyolysis.

However, not all trials reported well on adverse events. Most trials used a placebo run-in period, excluding patients that were not compliant. No reliable estimate on adverse events can therefore be made. *GRADE: LOW quality of evidence*

The pooling of two trials shows an increased risk of new-onset diabetes with statins compared to placebo.

GRADE: MODERATE quality of evidence (see also chapter on adverse events)

4.1.2.3 Other meta-analyses in primary prevention

In recent years several authors have published meta-analyses of statins versus placebo in primary prevention. We decided to report on only the two most recent publications (Taylor 2013 and CTT 2012). We briefly describe 3 other meta-analyses below.

Brugts 2009(45) sought randomized clinical studies with statins vs. control or placebo in patients without established cardiovascular disease, but with cardiovascular risk factors. Studies had to contain at least 80% patients without cardiovascular conditions or report the data of patients without previous cardiovascular disease separately in order to be included. The original authors were contacted in order to obtain any unpublished data. Diabetes was not an exclusion criterion. The follow-up had to last at least 1 year and cardiovascular morbidity and/or mortality had to be the primary outcome measures.

10 studies with in total 70388 participants were included. The average follow-up was 4.1 years. A significant decrease compared to placebo was demonstrated in the number of severe coronary incidents (OR: 0.70; 95%CI 0.61-0.81) and cerebrovascular incidents (OR: 0.81; 95% CI 0.71-0.93) and in the total mortality (OR: 0.88; 95%CI 0.81-0.96). The outcomes were the same when three trials with a small number of patients with known cardiovascular conditions were omitted from the analysis.

The authors concluded that the use of statins in people without cardiovascular disease but with cardiovascular risk factors was associated with a significant decrease in mortality and an important decrease in cardiovascular morbidity. They pointed out however that despite the fact that these were largely studies in primary prevention, the studies clearly included patients with an increased cardiovascular risk, as evidenced by the higher than expected annual incidence of fatal and non-fatal cardiovascular incidents (respectively 1.1 and 0.6%) and an annual mortality of 1.4%; figures that do not differ much from those in some of the secondary prevention studies.

Tonelli 2011(46) included randomized controlled trials with statins in people with a low cardiovascular risk (defined as a 10-year risk of cardiovascular mortality or non-fatal cardiac infarct of less than 20%, calculated by extrapolating the observed risk in the control groups of each study),with a follow-up of at least 6 months. Data from studies in a mixed (primary and secondary prevention) population were included if the 10-year risk was lower than 20% in the control group. Studies specifically about patients with diabetes were excluded, but on the other hand studies in people with Alzheimer's or with chronic kidney failure were included. Outcome measures were both cardiovascular morbidity and cardiovascular and total mortality.

In this way they identified 23 studies with in total 79495 participants and an average follow-up of 2 years. The average 10-year risk of cardiovascular mortality or non-fatal cardiac infarct amounted to 6%. Significant differences between statins and placebo were demonstrated for total mortality (RR 0.90; 95% CI 0.84-0.97) and coronary and cardiovascular morbidity (and further cardiac endpoints) (RR major coronary events 0.63; 95% CI 0.50-0.79), RR of major cerebrovascular events 0.83; 95% CI 0.74-0.93).

The NNT to prevent 1 extra death amounted to 239 (the number needed to treat was calculated based on the pooled risk in the control group of all studies included. The duration of treatment to which the NNT relates, thus appears to be the average duration of the studies included: average 2 years (range 0.5 years to 5.3 years).

Subgroup analyses indicated no relevant differences between so-called high-potency statins and low-potency statins.

The conclusion of the authors is that both high and low-potency statins are effective in the prevention of death and cardiovascular conditions in people with a 10-year risk of cardiovascular death or non-fatal myocardial infarct, most of whom had no known cardiovascular conditions or diabetes, with high NNTs.

Ray 2010(47) also sought randomized clinical studies of statins vs. placebo or control in patients without established cardiovascular disease. They concentrated only on total mortality as the primary endpoint. They also requested and obtained unpublished data. Studies from which it was not possible to separate the primary from the secondary prevention patients were excluded. Diabetes was not an exclusion criterion.

They included largely the same studies as Brugts 2009 but obtained more unpublished data, so that in the end they included 11 studies with in total 65229 patients. The average follow-up amounted to 3.7 years. A non-significant difference was demonstrated between statin and placebo/control regarding total mortality (RR 0.91; 95%Cl 0.83-1.01), which made the authors conclude that statins do not affect the total mortality in primary prevention.

The authors postulate that the careful exclusion of patients with previous cardiovascular disease from the different study populations explains the difference between their findings and those of Brugts et al. They also point out the large difference in reduction in mortality between the meta-analysis and the large JUPITER study (that provided a good quarter of the patients in this meta-analysis), which was ended prematurely and the authors suspect that the reduction in mortality in JUPITER (20% after 1.9 years follow-up) is an overestimation and the result of stopping this study prematurely.

4.1.3 Statin versus placebo in patients with a history of stroke or TIA

4.1.3.1 Evidence tabels

Meta-analysis: Interventions in the management of serum lipids for preventing stroke recurrence

Inclusion criteria: Unconfounded randomised trials of participants aged 18 years and over with a history of stroke or transient ischaemic attack (TIA). Search strategy: adequate. Cochrane Stroke Group Trials Register (last searched December 2008), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 3, 2008), MEDLINE (1966 to December 2008) and EMBASE (1980 to December 2008). We contacted pharmaceutical companies known to produce a lipid-lowering agent for information on relevant publications or unpublished work.

Assessment of quality of included trials: yes

ITT analysis: unclear

Other methodological remarks: -

Ref	Comparison	N/n	Outcomes	Result
Manktelow	Statins,	N= 5 (statins)	All ischaemic or haemorrhagic strokes (PO)	501/4645 (Statins) vs 553/4579 (Placebo)
Bradl-2009-	Fibrates	n= 9224	N=5	OR=0.88 (95% CI 0.77, 1.00)
(48)	Vs	(CARE,1999 ;		NS p = 0.05
	Placebo	FASTER, 2007 ;	All-cause mortality, including sudden deaths	216/2365 (Statins) vs 211/2366 (Placebo)
Design:		HPS, 2004;	N=1	OR=1.03 (95% CI 0.84, 1.25)
	In patients	LIPID, 2000;	(SPARCL, 2000)	NS p = 0.80
	with history of	SPARCL, 2000)	Serious vascular events	959/4209 (Statins) vs 1192/4194 (Placebo)
Search date:	stroke or TIA		N=3	OR=0.74 (95% CI 0.67, 0.82)
December			(FASTER, 2007 ; HPS, 2004; SPARCL, 2000)	SS p<0.00001 in favor of statins
2008			Ischaemic strokes	318/4010 (Statins) vs 396/4001 (Placebo)
(New search			N= 2	OR=0.78 (95% CI 0.67, 0.92)
for studies			(HPS, 2004 ; SPARCL, 2000)	SS p=0.0020 in favor of statins
and content			Haemorrhagic strokes	76/4010 (Statins) vs 44/4001 (Placebo)
updated			N= 2	OR=1.72 (95% CI 1.20, 2.46)
(conclusions			(HPS, 2004; SPARCL, 2000)	SS p=0.0033 in favor of placebo
changed),		N= 2 (fibrate)	All ischaemic or haemorrhagic strokes	60/315 (Fibrates) vs 45/312 (Placebo)
published in		n= 627	N= 2	OR=1.48 (95% CI 0.94, 2.30)
Issue 3, 2009)		(Acheson, 1972;		NS p = 0.087
		VACSA, 1973)	All-cause mortality, including sudden deaths	45/315 (Fibrates) vs 50/312 (Placebo)
			N= 2	OR=0.87 (95% CI 0.55, 1.39)

			NS p = 0.087
		Serious vascular events	67/268 (Fibrates) vs 55/264 (Placebo)
		N=1	OR=1.27(95% CI 0.84, 1.89)
		(VACSA, 1973)	NS p = 0.25
Statins,	N= 2 (statins)	All ischaemic or haemorrhagic strokes	29/233 (Statins) vs 41/258 (Placebo)
Fibrates	n= 491		OR=0.73 (95% CI 0.44, 1.22)
Vs	(CARE,1999;		NS p = 0.23
Placebo	LIPID, 2000)		
	N= 1 (clofibrate)	All ischaemic or haemorrhagic strokes	32/241(Fibrates) vs 23/244 (Placebo)
In patients	n= 485		OR=1.47(95% CI 0.84, 2.57)
with history o	f (VACSA, 1973)		NS p = 0.18
stroke			

* Characteristics of included studies: see below

Ref + design	n	Population	Duration	Comparison	Methodology
Acheson, 1972(49)	106		between 4	Clofibrate (250 mg	ALLOCATION CONC:
		Age: 43 to 76 years	months and	capsules: 4 to 6 daily for	unclear
RCT (PG)		Male: 68%	4 years	females; 6 to 8 daily for	RANDO:
		Inclusion: previous stroke or TIA		males)	Adequate
UK				vs	BLINDING :
				Placebo (corn oil for first	Participants/personnel/assessors
				20 months of trial)	unclear
					FOLLOW-UP: 89.7%
					ITT: ?
					FUNDING: ?
CARE, 1999(50)	211	211 previous stroke or TIA	median 5.0	Pravastatin (40 mg/d)	ALLOCATION CONC:
	=Sub	Age: 21 to 75 years	years	VS	Adequate
RCT (PG)	group	Male: 86% (whole trial)		Matching placebo	RANDO:
	analysis	Inclusion: MI 3 to 20 months before			Adequate
USA	of trial	randomisation, total cholesterol < 240			BLINDING :
		mg/dl; LDL 115 to 174 mg/			Participants/personnel/assessors
	(4159	dl; triglycerides _ 350 mg/dl			Adequate
	whole				FOLLOW-UP: >99%
	trial)				ITT:yes
					FUNDING:?

FASTER, 2007(51)	392	Age: 40 years or older	90 day	Simvastatin (40 mg/d)	ALLOCATION CONC:
		Male: 53%	follow-up	VS	Adequate
RCT (PG)		Inclusion: TIA or minor stroke (NIHSS < 4)		Matching placebo	RANDO:
2 x 2 factorial design		within 24 hours of onset	Trial		Adequate
with clopidogrel			stopped		BLINDING :
			early		Participants/personnel/assessors
Canada			because of		unclear
			low		FOLLOW-UP:?
			recruitment		ITT:yes
					FUNDING:
HPS, 2004(52)	3280	3280 with previous cerebrovascular event	mean of	Simvastatin (40 mg/d)	ALLOCATION CONC:
	=Sub	64% with a history of ischaemic	five years	vs	Adequate
RCT (PG)	group	stroke and 46% with TIA (those with		Matching placebo	RANDO:
2 x 2 factorial design	analysis	cerebral haemorrhage were			Adequate
with antioxidant	of trial	excluded)			BLINDING :
vitamin		Age: around 40 to 80 years			Participants/personnel/assessors?
supplementation	(20536	Inclusion: non-fasting total cholesterol _			Adequate
	whole	135 mg/dL, substantial 5-year risk from			FOLLOW-UP: >99%
	trial)	CHD			ITT:yes
UK					FUNDING:?
					35% of patients were enrolled on the basis of
					noncoronary vascular disease and 1% on the
					basis of high-risk hypertension. We
					conducted analyses with and without this
					trial.
LIPID, 2000(53)	369	369 with previous stroke	6 years	Pravastatin (40 mg/d)	ALLOCATION CONC:
	=Sub			vs	Adequate
RCT (PG)	group	Age: 31 to 75 years		Matching placebo	RANDO:
	analysis	Male: 83%			Adequate
Australia and New	of trial	Inclusion: MI or unstable angina pectoris 3			BLINDING :
Zealand		to 36 months before randomisation; total			Participants/personnel/assessors?
	(9014	cholesterol 155 to			Adequate
	whole	271 mg/dl and fasting triglicerides < 445			FOLLOW-UP: >99%
	trial)	mg/dl			ITT:yes
	-				FUNDING:?
SPARCL, 2000(54)	4731	Age: over 18	median 4.9	Atorvastatin (80 mg/d)	ALLOCATION CONC:

RCT (PG) worldwide (205 sites)		Male: 59.8% Inclusion: stroke or TIA in previous 6 months (cardio-embolic strokes excluded) cerebral infarction (67%), TIA (30%) and cerebral haemorrhage (2%)	years	vs Matching placebo	Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors? Adequate FOLLOW-UP: ITT:yes FUNDING:?
VACSA, 1973(55) RCT (PG) USA	541	Age: 70 or under Male: 100% Inclusion: history of cerebral infarction or TIA	up to 4.5 years	Clofibrate (500 mg x 4 daily) Vs Matching placebo	ALLOCATION CONC: unclear RANDO: Adequate BLINDING : Participants/personnel/assessors? unclear FOLLOW-UP: 98.4% ITT:? FUNDING:?

Author's conclusions (Manktelow-Bradley 2009):

"Implications for practice

There is good evidence for a benefit of statin therapy in those under the age of 80 years with a previous non-disabling stroke or TIA (but not cerebral haemorrhage) who have baseline total cholesterol levels > 3.5 mmols/l in terms of reducing subsequent serious vascular events. The data also suggest a marginal benefit of statins in reducing future cerebrovascular events, but not overall mortality. In view of this evidence it is recommended that all ischaemic stroke or TIA patients aged at least up to 80 years should receive statin therapy as part of a secondary prevention programme

Implications for research

Further work is needed to assess the potential role of statins for those patients with a previous cerebral haemorrhage, when after the cerebrovascular event therapy to alter lipid levels should be started, atwhat baseline lipid levels treatment should be commenced, what level of reduction should be aimed for or whether the very elderly (those aged over 80 years) stroke patient benefits to the same extent as a younger counterpart."

Statin vs placebo in	patients with a histo	ory of stroke or TIA	
Bibliography: Meta-	analysis: Manktelow	Bradley 2009(48)	
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)
All-cause mortality	4731 (1 study) median 4.9y	OR=1.03 (95% CI 0.84, 1.25) NS	⊕⊕⊕⊕ HIGH Study quality: OK Consistency: NA Directness: OK Imprecision: OK
All ischaemic or haemorrhagic stroke	9224 (5 studies) median +/-5y	OR=0.88 (95% CI 0.77, 1.00) p = 0.05	HIGH Study quality: OK Consistency: OK Directness: OK Imprecision: OK
Ischaemic stroke	8011 (2 studies) 5y	OR=0.78 (95% CI 0.67, 0.92) SS in favor of statins	⊕⊕⊕⊕ HIGH Study quality: OK Consistency: OK Directness: OK Imprecision: OK
haemorrhagic stroke	8011 (2 studies) 5y	OR=1.72 (95% Cl 1.20, 2.46) SS in favor of placebo	 ⊕ ⊕ ⊕ MODERATE Study quality: OK Consistency: -1 see chapter safety Directness: OK Imprecision: OK
Serious vascular events	8463 (3 studies) 5y	OR=0.74 (95% CI 0.67, 0.82) SS in favor of statins	 ⊕⊕⊕⊕ HIGH Study quality: OK Consistency: OK Directness: OK Imprecision: OK

4.1.3.2 Summary and conclusions. Statin versus placebo in patients with a history of stroke or TIA

A Cochrane systematic review and meta-analysis compared statins to placebo in patients with a history of stroke or TIA. In most trials, there was an age limit: patients were included up to 75 or 80y.

In patients with a previous stroke or TIA, there is no statistically significant difference in all-cause mortality between statin treatment and placebo. *GRADE: HIGH quality of evidence*

The difference in all ischemic or haemorrhagic strokes between statin treatment and placebo is of borderline statistical significance. *GRADE: HIGh quality of evidence*

Treatment with statins results in a lower risk of ischaemic stroke compared to placebo. *GRADE: HIGH quality of evidence*

Treatment with statins results in a higher risk of hemorrhagic stroke compared to placebo *GRADE: MODERATE quality of evidence*

There is a lower risk of serious vascular events with statin treatment compared to placebo *GRADE: HIGH quality of evidence*

No information on (other) adverse events was provided.

4.1.4 Statin versus placebo in patients with a history of coronary heart disease

4.1.4.1 Evidence tables

Meta-analysis: A systematic review and economic evaluation of statins for the prevention of coronary events – p.32: Assessment of effectiveness of statins in patients with CHD at baseline (secondary CHD prevention)

Inclusion criteria: randomised controlled trials (RCTs) of at least 6 months' (defined as 26 weeks) duration. Participants: adults (defined as age >18 years) with, or at risk of, CHD

<u>Search strategy</u>: Nine electronic bibliographic databases were searched: MEDLINE, EMBASE, Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CCTR), Database of Abstracts of Reviews of Effectiveness (DARE), Science Citation Index, NHS Economic Evaluation Database (NHS EED), Health Technology Assessment Database (NHS HTA) and CINAHL. In addition, the reference lists of relevant articles and sponsor submissions were handsearched.

Assessment of quality of included trials: yes

ITT analysis: unclear

Other methodological remarks: -

Ref	Comparison	N/n	Outcomes	Result
ref*Ward	Statin vs	N= 11	All-cause mortality	Treatment: 933/11360
2007 1426	placebo	n= 22686		Control: 1175/11326
(56)		(FLORIDA 2002, LIPS 2002,		RR: 0.80 (95% CI 0.71 to 0.89)
		CARE 1996, LIPID 1998,		SS in favour of statins
Design:		PLAC I 1995, PLAC II 1995,		
SR+MA		PREDICT 1997, REGRESS		
		1995, 4S 1994, CIS 1997,		
Search date:		SCAT 1995)		
between		N= 6	CVD mortality	Treatment: 589/9414
November		n= 18819		Control: 786/9405
2003 and		(FLORIDA 2002, CARE		RR: 0.75 (95% CI 0.68 to 0.83)
April 2004)		1996, LIPID 1998; PLAC I		SS in favour of statins
		1995; 4S 1994, CIS 1997)		

N= 12	CHD mortality	Treatment:532/11727
n= 23420		Control: 743/11693
(FLORIDA 2002, LIPS 2002,		RR: 0.72 (95% CI 0.64 to 0.80)
CARE 1996, LIPID 1998,		SS in favour of statins
PLAC I 1995, REGRESS		
1995, 4S 1994, CIS 1997,		
SCAT 1995, LiSA 1999,		
FLARE 1999, MAAS 1994)		
N=10	Fatal MI	Treatment: 114/10692
n=21350		Control: 201/10658
(FLORIDA 2002, CARE		RR: 0.57 (95% CI 0.45 to 0.72)
1996, LIPID 1998, PLAC I		SS in favour of statins
1995, PREDICT 1997,		
REGRESS 1995, 4S 1994,		
SCAT 1995, LiSA 1999,		
MAAS 1994)		
N=10	Non-fatal MI	Treatment: 408/7104
n=14180		Control: 596/7076
(LIPS 2002, CARE 1996,		RR: 0.69 (95% CI 0.59 to 0.79)
PLAC I 1995, PREDICT		SS in favour of statins
1997, REGRESS 1995, 4S		
1994, CIS 1997, SCAT		
1995, LISA 1999, FLARE		
1999)		
N=3	Unstable angina	Treatment: 886/4489
n=8968		Control: 1089/4479
(LISA 1999, CARE 1996, 4S		RR: 0.82 (95% CI 0.72 to 0.94)
1994)		SS in favour of statins
N=3	Hospitalisation for unstable angina	Treatment: 1043/4871
n=9728		Control: 1153/4857
(LIPID 1998, CIS 1997,		RR: 0.90 (95% CI 0.84 to 0.97)
SCAT 1995)		SS in favour of statins
N=3	Non-fatal stroke	Treatment: 189/6799
n=13581		Control: 250/6782
(CARE 1996, LIPID 1998,		RR: 0.72 (95% 0.53 to 0.97)

PLAC I 1995)		SS in favour of statins
N=1 n=4444 (45 1994)	New or worsening intermittent claudication	Treatment: 52/2221 Control: 81/2223 RR: 0.64 (95% CI 0.46 to 0.91) SS in favour of statins
N=8 n=21068 (LIPS 2002, CARE 1996, LIPID 1998, PREDICT 1997, 4S 1994, CIS 1997, SCAT 1995, LISA 1999)	Coronary revascularisation	Treatment: 1382/10551 Control: 1782/10517 RR: 0.77 (95% CI 0.69 to 0.85) SS in favour of statins
N=7 n=20747 (LIPS 2002, CARE 1996, LIPID 1998, 4S 1994, CIS 1997, LISA 1999, FLARE 1999)	CHD death plus non-fatal MI	Treatment: 1252/10383 Control: 1700/10364 RR: 0.73 (95% CI 0.68 to 0.80) SS in favour of statins

* Characteristics of included studies: see below

Ref + design	n	Population	Duration	Comparison	Methodology
LiSA 1999(57)	365	Stable symptomatic CHD,	1y	40-80mg statin/day vs	Study quality assessment by Ward
		hyperlipidaemic		control	2007(Randomisation and allocation concealment):
Placebo-controlled		Europe,			unclear
		mean age 60			
FLARE 1999(58)	834	CHD (successful balloon angioplasty)	40 weeks	80 mg statin/day vs	Study quality assessment by Ward: unclear
FLARE 1999(38)	034		40 WEEKS		Study quality assessment by ward, unclear
		Europe		control	
Placebo-controlled		mean age 61			
FLORIDA 2002(59)	540	Acute MI	1y	80 mg statin/day vs	Study quality assessment by Ward: unclear
		The Netherlands		control	
Placebo-controlled		mean age 60y			
LIPS 2002(21)	1677	Angina or silent ischaemia	3.9y	80 mg statin/day vs	Study quality assessment by Ward: good

	Europe, Canada, Brazil mean age 55y	(median)	control	"patients whose total cholesterol exceeded 7.2 mmol
				Γ^{-1} for 3 months or longer could discontinue study therapy at the investigator's discretion and receive an open-label statin or other lipid-lowering therapy. As a result, 10.7% of patients in the treatment arm and 24% in the placebo arm started taking other lipid- lowering medications (mainly statins) before their first major adverse cardiac event or completion of follow- up."
				"anecdotal evidence that many patients were aware of their total cholesterol levels as these had been tested by primary care physicians who were not involved in LIPS; as a result, these patients were no longer blinded to their treatment allocation"
4159	MI, average cholesterol mean age 59y	5y (median)	40 mg statin/day vs control	Study quality assessment by Ward: good
9014	MI or unstable angina median age 62y	6.1 y (mean)	40 mg statin/day vs control	Study quality assessment by Ward: unclear
				"although study personnel and patients remained unaware of lipid results from the core laboratory,119 the patient's general care was at the discretion of the patient's own doctor, and this allowed changes in lipid treatment to be made in the light of local cholesterol results"
408	CHD mean age 57	3 у	40 mg statin/day vs control	Study quality assessment by Ward: Unclear
151	CHD mean age 62	Зу	10-40 mg statin/day vs control	Study quality assessment by Ward: Unclear
695	CHD (successful PTCA) mean age 58y	6 months	40 mg statin/day vs control	Study quality assessment by Ward: Unclear
	9014 9014 408 151	mean age 55y4159MI, average cholesterol mean age 59y9014MI or unstable angina median age 62y408CHD mean age 57151CHD mean age 62695CHD (successful PTCA)	mean age 55y4159MI, average cholesterol mean age 59y5y (median)9014MI or unstable angina median age 62y6.1 y (mean)408CHD mean age 573 y151CHD mean age 623y695CHD (successful PTCA)6 months	mean age 55ymean age 55y4159MI, average cholesterol mean age 59y5y (median) Sy (median)40 mg statin/day vs control9014MI or unstable angina median age 62y6.1 y (mean) Sy (mean)40 mg statin/day vs control408CHD mean age 573 y40 mg statin/day vs control151CHD mean age 623y10-40 mg statin/day vs control695CHD (successful PTCA)6 months40 mg statin/day vs

884	СНD	2у	40 mg statin/day vs	Study quality assessment by Ward: Unclear
	mean age 56y		control	Potential candidates receiving therapy with lipid- lowering agents or drugs that could significantly affect serum lipid levels had their drugs withdrawn (at least 12 weeks for patients receiving HMG-CoA reductase inhibitors, clofibrate, or their analogues and at least 6 weeks for patients receiving bile acid sequestrants, nicotinic acid, or other prohibited drugs
381	Moderate hypercholesterolaemia and known CAD mean age 55y	4у	20mg statin/day vs control	Study quality assessment by Ward: Uncleart
4444	CHD and moderate hypercholesterolaemia mean age 58y	7.4y (median)	20-40mg statin/day vs control	Study quality assessment by Ward: good
254	CHD and hypercholesterolaemia mean age 49y	2.3y (mean)	20-40mg statin /day vs control	Study quality assessment by Ward: unclear
460	CHD Mean age 61y	47.8months (mean)	20-40mg statin/day vs control	Study quality assessment by Ward: good "the SCAT investigators deemed it unethical to keep on placebo patients whose total cholesterol persistently exceeded 5.5 mmol I–1. Consequently, the protocol was modified to permit such patients to be identified and reallocated, in a double-blind fashion, to simvastatin. It is not stated how many patients this
	381 4444 254	 mean age 56y 381 Moderate hypercholesterolaemia and known CAD mean age 55y 4444 CHD and moderate hypercholesterolaemia mean age 58y 254 CHD and hypercholesterolaemia mean age 49y 460 CHD 	Numerical mean age 56yAu mean age 56y381Moderate hypercholesterolaemia and known CAD mean age 55y4y4444CHD and moderate hypercholesterolaemia mean age 58y7.4y (median)254CHD and hypercholesterolaemia mean age 49y2.3y (mean)460CHD47.8months	mean age 56ycontrol381Moderate hypercholesterolaemia and known CAD mean age 55y4y20mg statin/day vs control4444CHD and moderate hypercholesterolaemia mean age 58y7.4y (median)20-40mg statin/day vs control254CHD and hypercholesterolaemia mean age 49y2.3y (mean) control20-40mg statin /day vs control460CHD47.8months20-40mg statin/day vs

Remarks:

-Author's remark: Assessment of effectiveness of statins in patients with CVD (including CHD) at baseline (secondary CVD prevention)

The evidence for the effectiveness of statins in patients with prior CVD is derived primarily from the studies of statins in secondary CHD prevention. However, it also draws on the findings of three relatively small studies (Mohler 2003,21 Aronow 2003118 and Mondillo 2003105) in patients with intermittent claudication. In addition, ASCOTLLA and WOSCOPS reported data relating to subgroups with vascular disease at baseline; however, these results should be treated with caution because, as noted above, the subgroup analysis from WOSCOPS is not, and that from ASCOT-LLA may not be, a true randomized comparison. It might be argued that two of the three studies in patients with intermittent claudication21,105 may be classified as primary CHD prevention, as they do not specify whether any participants had CHD at baseline. However, since all of the participants in these studies had symptomatic CVD at baseline, it seemed more appropriate to categorise them as secondary CVD prevention. As the additional studies

are small, and do not report data relating to all end-points, the changes to the tabulation of the effects of statins in secondary CHD prevention are few and so small as to be barely worth mentioning.

- Author's remarks: "Many studies reported the presence of cointerventions (generally statin or other lipidlowering therapy in the control group), which potentially influenced the study outcome. As a result of such cointerventions, combined with noncompliance with study therapy in the statin group, many studies may underestimate the potential effect of statin therapy in their study populations. However, this may be counterbalanced by the exclusion from some studies of patients who were hypersensitive to, intolerant of or known to be unresponsive to statins, or who were not adequately compliant with study medication during a placebo run-in phase. As the numbers involved may be large, this limits the generalisability of the results of those studies."

- "The results from the placebo-controlled trials are likely to be conservative as a result of the degree of cross-over (use of lipid-lowering therapies, in particular statins, in the placebo arm, and noncompliance with study therapy in the statin arm) reported in many studies. In some studies, the use of lipid-lowering therapy in the placebo arm was preplanned."

- "W Yeo has received speaker fees from Novartis, Pfizer, MSD and AstraZeneca for talks to GPs and prescribing advisors on the National Service Framework for CHD, which includes the use of statins. However, for the duration of his involvement with the preparation of this report, he has declined to comment on statins or attend any advisory boards where statins may have been discussed. His department has received research funding for the Anglo-Scandinavian Cardiac Outcomes Trial, an investigator-led multicentre study in high-risk hypertension patients of older versus more modern blood pressure-lowering drugs, with statin therapy in a factorial design. This study used atorvastatin and was part-funded by Pfizer."

Statin versus placeb	Statin versus placebo in patients with coronary heart disease							
Bibliography: Meta-a	Bibliography: Meta-analysis Ward 2007(56)							
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)					
All-cause mortality	22686 (11 studies) 6m-med 6.1y	RR: 0.80 (95% CI 0.71 to 0.89) SS in favour of statins	⊕⊕⊕⊖ MODERATE Study quality: unclear rando and allocation concealment in half the trials, Run-in Consistency: OK Directness:OK Imprecision:OK					
CVD mortality	18819 (6 studies) 1y-med 6.1y	RR: 0.75 (95% CI 0.68 to 0.83) SS in favour of statins	⊕ ⊕ ⊕ ⊖ MODERATE Study quality: unclear rando and allocation concealment in half the trials, Run-in Consistency: OK Directness:OK Imprecision:OK					
Non-fatal MI	14180 (10 studies) 1y-med 6.1y	RR: 0.69 (95% CI 0.59 to 0.79) SS in favour of statins	⊕⊕⊕⊖ MODERATE Study quality: unclear rando and allocation concealment in half the trials, Run-in Consistency: OK Directness:OK Imprecision:OK					
Non-fatal stroke	13581 (3 studies) 3y- med 6.1y	RR: 0.72 (95% 0.53 to 0.97) SS in favour of statins	⊕⊕⊕⊖ MODERATE Study quality: unclear rando and allocation concealment in 2/3 trials Consistency: OK Directness:OK Imprecision:OK					
New or worsening intermittent claudication	4444 (1 study) 7.4y	RR: 0.64 (95% CI 0.46 to 0.91) SS in favour of statins	⊕⊕⊕⊕ HIGH Study quality:OK Consistency:OK Directness:OK Imprecision:OK					

4.1.4.2 Summary and conclusions. Statin versus placebo in patients with a history of coronary heart disease

A systematic review and meta-analysis compared statins to placebo in patients with coronary heart disease at baseline. The mean age of included patients ranged from 49 years to 62 years. Follow up ranged from 6 months (1 trial) to 7.4 years. The quality of included trials was mixed: half the trials had inadequate (or unclear) allocation concealment or randomization.

In patients with coronary heart disease, statins significantly reduce all-cause mortality and mortality from cardiovascular disease.

GRADE: MODERATE quality of evidence

The risk of non-fatal myocardial infarction and non-fatal stroke is reduced with statins compared to placebo, in patients with coronary heart disease.

GRADE: MODERATE quality of evidence

In this population, statins reduce the risk of new or worsening intermittent claudication compared to placebo.

GRADE: HIGH quality of evidence

4.1.5 Statin versus placebo in elderly patients without established cardiovascular disease

4.1.5.1 Evidence tables

Meta-analysis: Benefits of statins in elderly subjects without established cardiovascular disease

Inclusion criteria:

Randomized allocation to statin or placebo; report of outcomes in the subgroup of patients with age at randomization \geq 65 years and without established CV disease; and report of at least 1 clinical event among all-cause death, CV death, myocardial infarction (MI), stroke, and new cancer onset. Search strategy:

The study was designed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement

MEDLINE, Cochrane, ISI Web of Science, and SCOPUS databases were searched for articles published until January

"pravastatin" or "lovastatin" or "simvastatin" or "rosuvastatin" or "atorvastatin" or "pitavastatin" or "mevastatin" or "fluvastatin"

No language restrictions were applied.

Assessment of quality of included trials:

yes: The GRADE (Grading of Recommendations Assessment, Development and Evaluation) method was used to summarize the findings and score the overall quality of evidence.

Publication bias evaluated

ITT analysis: yes

Other methodological remarks:

Data synthesis & analysis:

- Overall estimates of effect were calculated with a fixed-effects model or with a random-effects model when heterogeneity could not be explained
- The assumption of homogeneity between the treatment effects in different trials was tested by Q statistic and further quantified by I² statistic.

Sensitivity analysis

- To verify the consistency of outcome meta-analysis results, the influence of each individual study on the summary effect estimate was assessed by the 1-study removed sensitivity analysis using the "metaninf" command (STATA)
- To explore the influence of potential effect modifiers on outcomes, weighted random-effects metaregression analysis was performed to test demographic characteristics of the study population, duration of follow-up, CV risk factors (including diabetes mellitus and hypertension), type of statin, concomitant medications, and changes in lipid profile from baseline to the end of follow-up

Table 2 GRADE Method Evidence Summarizing the Outcomes Measured

	Quality Assessment						Summa	ry of Findings		
								Illustrative Com	parative Risks (95% CI)	Quality of the
	No. of Studies (Participants)	Methodological Limitations	Consistency	Directness	Precision	Publication Bias	Relative Effect (95% CI)	Assumed Risk Placebo	Corresponding Risk Statin	Evidence (GRADE)
All-cause death	7 (21,435)	No serious limitations	No inconsistency	Direct	No uncertainty	Unlikely	RR: 0.941 (0.856-1.035)	5.1 per 100	4.8 per 100 (4.4-5.3)	++++ High
Cardiovascular death	5 (13,914)	No serious limitations	No inconsistency	Direct	No uncertainty	Unlikely	RR: 0.907 (0.686-1.199)	1.1 per 100	10 per 100 (0.7-13)	++++ High
Myocardial infarction	5 (15,929)	No serious limitations	No inconsistency	Direct	No uncertainty	Unlikely	RR: 0.606 (0.434- 0.847)	3.7 per 100	2.2 per 100 (1.6-3.1)	++++ High
Stroke	5 (16,322)	No serious limitations	No inconsistency	Direct	No uncertainty	Unlikely	RR: 0.762 (0.626-0.926)	3.6 per 100	2.7 per 100 (2.2-3.3)	++++ High
New cancer onset	3 (11,556)	No serious limitations	No inconsistency	Direct	No uncertainty	Unlikely	RR: 0.989 (0.851-1.151)	5.5 per 100	5.4 per 100 (4.7-6.3)	++++ High

CI = confidence interval; GRADE = Grading of Recommendations Assessment, Development and Evaluation; RR = relative risk.

Ref	Comparison	N/n	Outcomes	Result	
ref*Savarese	Statins vs	N= 7	All-cause death	RR: 0.941 (95% CI 0.856 to 1.035)	
2013 (67)	placebo	n= 21435		NS	
		(AFCAPS/TexCAPS 1998,			
Design: MA		ALLHAT-LLT 2002,		Illustrative comparative risks (ICR):	
		ASCOT-LLA 2011,		Placebo: 5.1/100	
Search date:		Bruckert 2003, CARDS		Statin: 4.8/100 (95% CI 4.4 to 5.3)	
until January		2006, JUPITER 2010,			
2013		MEGA 2011)			
		N= 5	Cardiovascular death	RR: 0.907 (95% CI 0.686 to 1.199)	
42.7%		n= 13914		NS	
females;		(AFCAPS/TexCAPS 1998,		ICR:	
mean age		ASCOT-LLA 2011,		Placebo: 1.1/100	
73.0 +/- 2.9		Bruckert 2003, CARDS		Statin: 1.0/100 (95% CI 0.7 to 1.3)	
years; mean		2006, JUPITER 2010)			
follow-up 3.5		N= 5	Myocardial infarction	RR: 0.606 (95% CI 0.434 to 0.847)	
+/- 1.5 years		n= 15929		SS in favour of statin	
		(AFCAPS/TexCAPS 1998,			
		ASCOT-LLA 2011, CARDS		ICR:	

2006, JUPITER 2010,		Placebo: 3.7/100
PROSPER 2002)		Statin: 2.2/100 (95% CI 1.6 to 3.1)
N= 5	Stroke	RR: 0.762 (95% CI 0.626 to 0.926)
n= 16322		SS in favour of statin
(ASCOT-LLA 2011, CARDS		
2006, JUPITER 2010,		ICR:
MEGA 2011, PROSPER		Placebo: 3.6/100
2002)		Statin: 2.7/100 (95% CI 2.2 to 3.3)
N=3	New cancer onset	RR: 0.989 (95% CI 0.851 to 1.151)
n= 11556		NS
(AFCAPS/TexCAPS 1998,		ICR:
ASCOT-LLA 2011, JUPITER		Placebo: 5.5/100
2010)		Statin: 5.4/100 (95% CI 4.7 to 6.3)

* Characteristics of included studies: see below

Ref + design	n	Population	Duration	Comparison	Methodology
AFCAPS/TexCAPS	1416	Patients with average cholesterol	5.2y	Lovastatin 20/40	ALLOCATION CONC: unclear
1998(6)		levels and without prior CV disease		mg vs placebo	RANDO: unclear
		Age: NA			BLINDING :
RCT		25% females			Participants/personnel/assessors
		HTN: NA			Adequate
Double-blinded		DM: 6%			FOLLOW-UP:
		Smoking: 12%			no dropouts reported
					ITT:yes
		SUBGROUP ≥65y			FUNDING: unclear risk (funded by pharm industry)
					Run-in: Participants who met entrance criteria and completed a 12-
					week American Heart Association Step I diet run-in,
					including a 2-week placebo baseline run-in, were randomized. No
					information on how many people were excluded in this step.
					Trial was stopped prematurely. To be terminated when 320 participants had experienced
					primary outcome event. Stopped when 267 had done at 5.2 years
ALLHAT-LLT	5707	Moderate hypercholesterolemia,	4.8y	Pravastatin 40 mg	ALLOCATION CONC:
2002(8)	5707	HTN	4.0y	vs placebo	Adequate
2002(0)				vs placeno	Αυειμαίε

RCT		Age: NA			RANDO:
NCT .		49% females			Adequate
Double-blinded		HTN: 100%			BLINDING : no
Double-billided		DM: NA			
					FOLLOW/ LID: At the and of the trial OA OV of northicing statutors
		Smoking: NA			FOLLOW-UP: At the end of the trial, 84.8% of participants were
					known to be alive, 12.3% were confirmed dead, 0.5% were
		SUBGROUP ≥65y			reported dead with confirmation pending, and 2.4% had unknown
					vital status.
					ITT:yes
					FUNDING:
					Methodological remarks:
					because of the modest cholesterol differential between pravastatin
					and usual care, ALLHAT-LLT lacked the power to discriminate
					between the expected reductions in mortality and CHD events and
					the null hypothesis.
ASCOT-LLA	4445	HTN and at least 3 CV risk factors	3.3y	Atorvastatin 10	ALLOCATION CONC:
2011(68)		Age: 71y		mg vs placebo	unclear
		20% females			RANDO:
RCT		HTN: 100%			Adequate
		DM: 27%			BLINDING :
Double-blinded		Smoking: 24%			assessors: yes
					FOLLOW-UP: 99%
					ITT:yes
					Note: 4 week run-in
					FUNDING:Pfizer
Bruckert	1229	Primary hypercholesterolemia	1y	Fluvastatin 80 mg	'not reported by Savarese 2013'
2003(69)		Age: 75-76y		vs placebo	
		75% females			
RCT		HTN: 56%			
		DM: 7%			
Double-blinded		Smoking: 5%			
CARDS 2006(70)	1129	Type 2 DM and at least 1 other CV	3.9y	Atorvastatin 10	ALLOCATION CONC: Adequate

RCT Double-blinded		risk factor Age: 69y 31% females HTN: NA DM: 100% Smoking: 16% SUBGROUP ≥65y		mg vs placebo	 RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate (triple blind part/pers/assess) FOLLOW-UP: 1% lost to follow up ITT:yes FUNDING: unclear risk (funded by pharm industry) Run-in: excluded if during the baseline phase they had less than 80% compliance with placebo 12% excluded from baseline phase
					Trial stopped prematurely due to large beneficial treatment effect
JUPITER 2010(71)	5695	CRP >2.0 mg/l	1.9y	Rosuvastatin 20	ALLOCATION CONC:
		Age: 74y		mg vs placebo	Adequate
RCT		51% females			RANDO:
		HTN: 66%			Adequate
Double-blinded		DM: NA			BLINDING :
		Smoking: 8%			Participants/personnel/assessors
					Adequate
		SUBGROUP ≥65y			
					FOLLOW-UP:
					100 % in efficacy analysis
					ITT: yes
					Stopped early with a median follow-up of 1.9 years.
					Run-in : 4-week run-in phase during which they received
					placebo. Only subjects who successfully completed the run-in phase
					were enrolled (19323 received run-in, of which 1521 excluded
					=7.8%)
					Primary endpoint event rate higher than predicted. Mortality higher
					than predicted (by comparison to other trials)
			<u> </u>		Funding: High risk (funded by pharm industry)
MEGA 2011(72)	1814	Hypercholesterolemic Japanese	5y	Pravastatin 10/20	ALLOCATION CONC: Adequate
D.CT		patients		mg vs placebo	RANDO: Adequate
RCT		Age: NA			BLINDING :
Open-label		68% females			Participants/personnel/assessors
Open-label				1	

study		HTN: 52% DM: 21% Smoking: 14% SUBGROUP ≥65y			Inadequate; single blinded endpoint committee was blinded only because investigators stated that placebo-controlled trials are regarded with suspicion by Japanese participants FOLLOW-UP: 98 % in efficacy analysis ITT:yes FUNDING: low risk (funded by pharm industry)
PROSPER	3239	Raised risk of CV disease because of	3.2y	Pravastatin 40 mg	ALLOCATION CONC: Adequate
2002(24)		smoking, HTN, or DM		vs placebo	RANDO: Adequate
		Age: 75y*			BLINDING : Adequate
RCT		52% females*			
		HTN: 62%*			FOLLOW-UP: 25% did not complete trial (due to adverse event,
Double-blinded		DM: 11%*			death, refusal or lost)
		Smoking: 27%*			13% refusal or lost to follow-up
		*Data from the published cohort of			
		primary and secondary prevention			ITT:yes
		patients			FUNDING: Bristol- Myers Squibb, USA
		Subgroup without established CVD			

4.1.5.2	Summary and conclusions. Statin versus placebo in elderly patients without
	established cardiovascular disease

Statin versus place	oo in elderly subjects	without established cardiovascu	lar disease
Bibliography: Savare	ese 2013(67)		
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)*
All-cause death	21435 (7 studies) 1y-5.2y	RR: 0.94 (95% CI 0.86 to 1.04) NS	HIGH Study quality:OK Consistency:OK Directness:OK Imprecision:OK
Cardiovascular death	13914 (5 studies) 1.9y-5.2y	RR: 0.91 (95% CI 0.69 to 1.20) NS	HIGH Study quality:OK Consistency:OK Directness:OK Imprecision:OK
Myocardial infarction	15929 (5 studies) 1.9y-5.2y	RR: 0.61 (95% CI 0.44 to 0.85) SS in favour of statin ICR: Placebo: 3.7/100 Statin: 2.2/100 (95% CI 1.6 to 3.1)	HIGH Study quality:OK Consistency:OK Directness:OK Imprecision:OK
Stroke	16322 (5 studies) 1.9y-5y	RR: 0.76 (95% CI 0.63 to 0.94) SS in favour of statin ICR: Placebo: 3.6/100 Statin: 2.7/100 (95% CI 2.2 to 3.3)	⊕⊕⊕⊕ HIGH Study quality:OK Consistency:OK Directness:OK Imprecision:OK
New cancer onset	11556 (3 studies) 1.9y-5.2y	RR: 0.99 (95% CI 0.85 to 1.15) NS	Image: Consistency:OKDirectness:- durationsomewhat short for thisoutcomeImprecision:OK

*GRADE as reported by Savarese 2013. New Cancer onset downgraded by farmaka to be consistent with total body of evidence regarding cancer risk.

This is a well-conducted meta-analysis of RCTs that compare a statin to placebo in elderly patients without established cardiovascular disease. The mean age of included subjects was 73 +/- 2.9 years. The mean follow-up was 3.5 +/- 1.5 years.

The authors used the GRADE methodology to rate the quality of evidence.

In elderly patients without established cardiovascular disease, there is no statistically significant difference in all-cause death between statin and placebo. *GRADE: HIGH quality of evidence*

In elderly patients without established cardiovascular disease, there is no statistically significant difference in cardiovascular death between statin and placebo. *GRADE: HIGH quality of evidence* In this population, statin treatment lowers the risk of myocardial infarction (RR: 0.61 (95% CI 0.44 to 0.85)).

GRADE: HIGH quality of evidence

In this population, statin treatment also lowers the risk of stroke (RR: 0.76 (95% CI 0.63 to 0.94)). *GRADE: HIGH quality of evidence*

In elderly patients without established cardiovascular disease, there is no statistically significant difference in new onset cancer between statin treatment and placebo. GRADE: MODERATE quality of evidence

4.1.6 Statin versus placebo in elderly patients with a history of coronary heart disease

4.1.6.1 Evidence tables

Meta-analysis: Statins for Secondary Prevention in Elderly Patients, A Hierarchical Bayesian Meta-Analysis

Inclusion criteria:

-randomized allocation to statin or placebo

-documented coronary heart disease at the time of randomization,

 \ge 50 elderly patients (defined as age \ge 65 years),

-6 months of follow-up, and all-cause mortality, CHD mortality, nonfatal MI, need for revascularization, or stroke reported as an outcome measure

<u>Search strategy</u>: 5 electronic databases, the Internet, and conference proceedings to identify relevant trials. In addition, we obtained unpublished data for the elderly patient subgroups from 4 trials and for the secondary prevention subgroup from the PROSPER (PROspective Study of Pravastatin in the Elderly at Risk) trial.

<u>Assessment of quality of included trials</u>: yes. All qualifying studies were assessed for concealment of randomized assignment, completeness of follow-up, and intention-to-treat analysis. We recorded whether patients in the intervention and control groups were similar at the start of the study and treated equally except for the designated treatment

ITT analysis: unclear.("analyses were conducted on an intention-to-treat basis in 8 out of 9 RCTs.")

Other methodological remarks:

- We carried out this meta-analysis in accordance with standards set forth by the Quality of Reporting of Meta-Analyses of Randomised Controlled Trials (QUOROM) Statement.
- Data were analyzed with hierarchical Bayesian modeling: to account for all between-trial variations
- "We conducted Bayesian analyses adjusting for the proportion of patients with prior MI (including analyses with and without the HPS trial) and found that the treatment effects remained consistent. Finally, we conducted unadjusted non-Bayesian Frequentist analyses and again found that the treatment effects remained consistent."
- "The majority of the RCTs stratified randomization by age group, further reducing the risk of unbalanced randomization."

Table 1 Trial Characteristics

	Published Elderly Subgroups			Unpublished Elderly Subgroups					
	4S	CARE	LIPID	HPS	PLAC I	REGRESS	FLARE	LIPS	PROSPER
Year	1997	1998	2001	2002	1995	1995	1999	2002	2002
Mean follow-up, yrs	5.4*	5.0*	6.1	5.0	2.3	2.0	0.8	3.9*	3.2
No. of elderly	1,021	1,283	3,514	10,697	94	138	366	623	1,833
Age range, yrs	65-70	65-75	65-75	65-80	65-75	65-70	65-80	65-80	70-82
Mean age, yrs (SD)	66.8 (1.4)	69.0 (66,73)*	68.8 (2.7)	n/a	68.3 (2.6)	67.6 (1.5)	70.4 (3.7)	70.1 (3.9)	75.6 (3.4)
Inclusion criteria	MI >6 months or stable angina	MI 3-20 months	MI or unstable angina 3-36 months	Vascular disease or diabetes	Angiographic CAD or recent MI	Angiographic CAD	CAD requiring PCI	CAD requiring PCI	MI >6 months stable angina
Study drug									
Drug	Simvastatin	Pravastatin	Pravastatin	Simvastatin	Pravastatin	Pravastatin	Fluvastatin	Fluvastatin	Pravastatin
Dose, mg/day	20-40	40	40	40	40	40	80	80	40
Nonstudy drugs									
Aspirin, %	35	82	79	63†	65	49	68	96	63
Beta-blockers, %	54	37	45	26†	18	74	57	54	33
Baseline characteristics									
Women, %	24	18	20	25†	39	0	23	22	42
Diabetes, %	5	19	10	29†	0	0	9	15	9
Smoking, %	18	12	6	14†	17	n/a	16	15	16
Hypertension, %	29	48	45	41†	57	27	38	43	46
Prior MI, %	83	100	60	41†	38	49	26	42	42
Mean baseline lipid levels, mmol/I§									
Total cholesterol	6.7	5.4	5.6	5.9†	6.0	5.8	5.5	5.1	5.7
LDL-C	4.9	3.6	3.9	3.4†	4.2	4.1	3.8	3.4	3.8
HDL-C	1.2	1.0	0.9	1.1†	1.1	0.9	1.1	1.0	1.2
Triglycerides	1.5	1.7	1.5	2.1†	1.9	1.6	1.5	1.6	1.6
Mean change in lipid levels, %									
Total cholesterol	-26	-20	-19	-20†	-19	-19	-23	-17	n/a
LDL-C	-36	-29	-28	-29†	-28	-27	-32	-24	-32‡
HDL-C	+7	+4	+7	+3†	+8	+9	+4	-1	+5‡
Triglycerides	-14	-12	-11	-14†	-10	-13	-5	-2	-12‡
Study quality									
Follow-up, %	100	>99	>99	>99	78	>99	95	99	89‡
Intention-to-treat	Yes	Yes	Yes	Yes	Yes	n/a	Yes	Yes	Yes
Double-blind	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

*Median (Q1, Q3). †Data from the published cohort of young and elderly patients. ‡Data from the published cohort of primary and secondary prevention patients. §To convert total cholesterol, LDL-C, and HDL-C from mmol/i to mg/dl, divide by 0.02586. To convert triglycerides from mmol/i to mg/dl, divide by 0.01129.

CAD - coronary artery disease; MI - myocardial infarction; LDL-C - low-density-lipoprotein cholesteroi; HDL-C - high-density-lipoprotein cholesteroi; n/a - not available; MI - myocardial infarction; PCI - percutaneous coronary intervention.

Ref	Comparison	N/n	Outcomes	Result
ref* Afilalo	Statin vs	N= 9	All-Cause mortality	Statin:1531/9819 (15.59%)
2008(73)	placebo	n= 19569		Placebo: 1827/9750 (18.74%)
		(4S 1997, CARE 1998,		RR= 0.78 (95% Credible Interval 0.65 to 0.89)
Design:		LIPID 2001, HPS		SS in favour of Statin
Hierarchical		2002, PLAC I 1995,		
Bayesian		REGRESS 1995, FLARE		Statin therapy reduced the incidence of all-cause mortality by 22%
Meta-		1999, LIPS 2002,		over 5 years as compared to placebo. The posterior median estimate
Analysis		PROSPER 2002)		of the number need to treat was 28.
		N= 9	Coronary Heart Disease Mortality	Statin: 857/9819 (8.73%)
Search date:		n= 19569 (4S 1997,		Placebo:1102/9750 (11.30%)
Dec 2007		CARE 1998, LIPID		RR= 0.70 (95% Credible Interval 0.53 to 0.83)
		2001, HPS 2002,		SS in favour of statin
mean		PLAC 1995,		
weighted		REGRESS 1995, FLARE		Statin therapy reduced the incidence of coronary heart disease
follow-up		1999, LIPS 2002,		mortality by 30% over 5 years as compared to placebo. The posterior
period was		PROSPER 2002)		median estimate of the number need to treat was 34.
4.9 years				
(95,929		N= 8	Nonfatal Myocardial Infarction	Statin: 357/4453 (8.02%)
patient-		n= 8872 (4S 1997,	-	Placebo: 465/4419 (10.52%)
years).		CARE 1998, LIPID		RR= 0.74 (95% Credible Interval 0.60 to 0.89)
		2001, PLAC I 1995,		SS in favour of statin
age range of		REGRESS 1995, FLARE		
65 to 82		1999, LIPS 2002,		Statin therapy reduced the incidence of nonfatal myocardial
years		PROSPER 2002)		infarction by 26% over 5 years as compared to placebo. The
				posterior median estimate of the number need to treat was 38.
		N= 7	Revascularization	Statin: 422/4274 (9.87%)
		n=8506 (4S 1997,		Placebo:586/4232 (13.85%)
		CARE 1998, LIPID		RR= 0.70 (95% Credible interval 0.53 to 0.83)
		2001, PLAC I 1995,		SS in favour of statin
		REGRESS 1995, LIPS		
		2002, PROSPER 2002)		Statin therapy reduced the need for revascularization (percutaneous
				coronary intervention or aortocoronary bypass surgery) by 30% over
				5 years as compared to placebo. The posterior median estimate of
				the number need to treat was 24.

N= 5	Stroke	Statin: 458/8723 (5.25%)
n= 17421 (CARE		Placebo:611/8698 (7.02%)
1998, LIPID 2001,		RR= 0.75 (95% Credible interval 0.56 to 0.94)
HPS 2002, PLAC I		SS in favour of statin
1995, PROSPER 2002)		
		Statin therapy reduced the incidence of stroke by 25% over 5 years
		as compared to placebo. The posterior median estimate of the
		number need to treat was 58.

RR= 5year pooled estimate

* Characteristics of included studies: see below

Ref + design	n	Population	Duration	Comparison	Methodology
4S 1997(25, 74)	No. of	Inclusion criteria: MI > 6 months or stable	5.4y	Simvastatin 20-	ALLOCATION CONC:
	elderly:	angina	(Median	40mg/day vs placebo	unclear
RCT	1021	Age range, yrs: 65-70	(Q1, Q3))		RANDO:
Double blind		Mean age, yrs (SD): 66.8 (1.4)			unclear
					BLINDING :
		Nonstudy drugs			Participants/personnel/assessors
		- Aspirin, %:35			unclear
		- Beta-blockers, %:54			
		Baseline characteristics:			FOLLOW-UP: 100%
		- Women, %:24			note 2 week placebo run in
		- Diabetes, %:5			FUNDING:Merck
		- Smoking, %:18			ITT:yes
		- Hypertension, %:29			
		- Prior MI, %:83			
		Mean baseline lipid levels, mmol/ l			
		- TC:6.7			
		- LDL-C:4.9			
		- HDL-C:1.2			
		- TG: 1.5			
CARE 1998(75)	No. of	Inclusion criteria: MI 3–20 months	5y	Pravastatin 40 mg/day	ALLOCATION CONC:
	elderly:	Age range, yrs:65-75	(Median	vs placebo	Adequate
RCT	1283	Mean age, yrs (SD): 69.0 (66.73)	(Q1, Q3))		RANDO:

Double blind		Nonstudy drugs - Aspirin, %:82 - Beta-blockers, %:37 Baseline characteristics: - Women, %:18 - Diabetes, %:19 - Smoking, %:12 - Hypertension, %:48 - Prior MI, %:100 Mean baseline lipid levels, mmol/ I - TC: 5.4 - LDL-C:3.6 - HDL-C:1.0 - TG:1.7			Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: >99% ITT:yes FUNDING:?
LIPID 2001(76)	No. of	Inclusion criteria: MI or unstable angina 3–	6.1y	Pravastatin 40 mg/day	ALLOCATION CONC:
	elderly:	36 months		vs placebo	Adequate
RCT	3514	Age range, yrs:65-75			RANDO:
Double blind		Mean age, yrs (SD): 68.8 (2.7)			Adequate
					BLINDING :
		Nonstudy drugs			Participants/personnel/assessors?
		- Aspirin, %:79			Adequate
		- Beta-blockers, %:45			5011011110 0011
		Baseline characteristics:			FOLLOW-UP: >99%
		- Women, %:20			ITT:yes
		- Diabetes, %:10			FUNDING:?
		- Smoking, %:6			
		- Hypertension, %:45			
		- Prior MI, %:60 Mean baseline lipid levels, mmol/ I			
		- TC:5.6			
		- IC.5.6 - LDL-C:3.9			
		- LDL-C:3.9 - HDL-C:0.9			
		- TG:1.5			

HPS 2002(18) RCT Double blind	No. of elderly: 10697	Inclusion criteria: Vascular disease or diabetes Age range, yrs:65-80 Mean age, yrs (SD):n/a Nonstudy drugs* - Aspirin, %:63 - Beta-blockers, %:26 Baseline characteristics:* - Women, %:25 - Diabetes, %:29 - Smoking, %:14 - Hypertension, %:41 - Prior MI, %:41 Mean baseline lipid levels, mmol/ I* - TC:5.9 - LDL-C:3.4 - HDL-C:1.1 - TG:2.1 * Data from the published cohort of young and elderly patients	5.0y	Simvastatin 40 mg/day vs placebo	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors? Adequate FOLLOW-UP: >99% ITT:yes FUNDING:? 35% of patients were enrolled on the basis of noncoronary vascular disease and 1% on the basis of high-risk hypertension. There was a change in the protocol so that only patients whose total blood cholesterol was < 250 mg/dl could be randomized whilst patients with total blood cholesterol > 250 mg/dl who had already been enrolled in the study had to be re-evaluated and, if appropriate, pharmacologically treated. The DSMB and the SC agreed to stop randomization prematurely in late 1996 after the publication of CARE results
PLAC I 1995(61) RCT Double blind	No. of elderly: 94	Inclusion criteria: Angiographic CAD or recent MI Age range, yrs:65-75 Mean age, yrs (SD): 68.3 (2.6) Nonstudy drugs - Aspirin, %:65 - Beta-blockers, %:18 Baseline characteristics:	2.3y	Pravastatin 40 mg/day vs placebo	ALLOCATION CONC: Unclear RANDO: Unclear BLINDING : unclear FOLLOW-UP: 78% ITT: yes

REGRESS 1995(64)	No. of	 Women, %:39 Diabetes, %:0 Smoking, %:17 Hypertension, %:57 Prior MI, %:38 Mean baseline lipid levels, mmol/ I TC:6.0 LDL-C:4.2 HDL-C:1.1 TG:1.9 Inclusion criteria: Angiographic CAD 	2.0y	Pravastatin 40 mg/day	ALLOCATION CONC:
	elderly:	Age range, yrs:65-70		vs placebo	Unclear
RCT	138	Mean age, yrs (SD): 67.6 (1.5)			RANDO:
Double blind					unclear.
		Nonstudy drugs			BLINDING :
		- Aspirin, %:49			adequate
		- Beta-blockers, %:74			
		Baseline characteristics:			FOLLOW-UP: >99%
		- Women, %:0			ITT: yes
		- Diabetes, %:0 - Smoking, %:n/a			Potential candidates receiving therapy with
		- Hypertension, %:27			lipid-lowering agents or drugs that could
		- Prior MI, %:49			significantly affect serum lipid levels had their
		Mean baseline lipid levels, mmol/ l			drugs withdrawn (at least 12 weeks for
		- TC:5.8			patients receiving HMG-CoA reductase
		- LDL-C:4.1			inhibitors, clofibrate, or their analogues and at
		- HDL-C:0.9			least 6 weeks for patients receiving bile acid
		- TG:1.6			sequestrants, nicotinic acid, or other prohibited
					drugs
FLARE 1999(58)	No. of	Inclusion criteria: CAD requiring PCI	0.8y	Fluvastatin 80 mg/day vs	ALLOCATION CONC:
	elderly:	Age range, yrs:65-80		placebo	Unclear
RCT	366	Mean age, yrs (SD):70.4 (3.7)			RANDO:
Double blind					Unclear
		Nonstudy drugs			BLINDING :
		- Aspirin, %:68			adequate
		- Beta-blockers, %:57			

		Baseline characteristics: - Women, %:23 - Diabetes, %:9 - Smoking, %:16 - Hypertension, %:38 - Prior MI, %:26 Mean baseline lipid levels, mmol/ I - TC:5.5 - LDL-C:3.8 - HDL-C:1.1 - TG:1.5			FOLLOW-UP: 95% ITT: <mark>n</mark> o
LIPS 2002(21)	No. of elderly: 623	Inclusion criteria: CAD requiring PCI Age range, yrs:65-80 Mean age, yrs (SD): 70.1 (3.9)	3.9y (Median (Q1, Q3))	Fluvastatin 80 mg/day vs placebo	ALLOCATION CONC: Adequate RANDO:
Double blind		Nonstudy drugs - Aspirin, %:96 - Beta-blockers, %:54 Baseline characteristics: - Women, %:22 - Diabetes, %:15 - Smoking, %:15 - Hypertension, %:43 - Prior MI, %:42 Mean baseline lipid levels, mmol/ I - TC:5.1 - LDL-C:3.4 - HDL-C:1.0 - TG:1.6			Adequate BLINDING : Adequate, but see below FOLLOW-UP: >90% completed trial ITT:yes FUNDING:Novartis "patients whose total cholesterol exceeded 7.2 mmol Γ^1 for 3 months or longer could discontinue study therapy at the investigator's discretion and receive an open-label statin or other lipid-lowering therapy. As a result, 10.7% of patients in the treatment arm and 24% in the placebo arm started taking other lipid- lowering medications (mainly statins) before their first major adverse cardiac event or completion of follow-up." "anecdotal evidence that many patients were aware of their total cholesterol levels as these had been tested by primary care physicians who were not involved in LIPS; as a result, these patients were no longer blinded to their

					treatment allocation"
PROSPER 2002(24)	No. of	Inclusion criteria: MI > 6 months or stable	3.2y	Pravastatin 40 mg/day	ALLOCATION CONC: Adequate
	elderly:	angina		vs placebo	RANDO: Adequate
RCT	1833	Age range, yrs:70-82			BLINDING : Adequate
Double blind		Mean age, yrs (SD): 75.6 (3.4)			
					FOLLOW-UP: 25% did not complete trial (due
		Nonstudy drugs			to adverse event, death, refusal or lost)
		- Aspirin, %:63			13% refusal or lost to follow-up
		- Beta-blockers, %:33			
		Baseline characteristics:			ITT:yes
		- Women, %:42			FUNDING: Bristol- Myers Squibb, USA.
		- Diabetes, %:9			FOLLOW-UP: 89%*
		- Smoking, %:16			
		- Hypertension, %:46			
		- Prior MI, %:42			*Data from the published cohort of primary
		Mean baseline lipid levels, mmol/ l			and secondary prevention patients
		- TC:5.7			
		- LDL-C:3.8			
		- HDL-C:1.2			
		- TG:1.6			

4.1.6.2 Summary and conclusions. Statin versus placebo in elderly patients with a history of coronary heart disease

Statin versus placeb	Statin versus placebo in elderly patients with documented coronary heart disease						
Bibliography: Afilalo	2013(73)						
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)				
All-cause mortality	19569 (9 studies)	RR= 0.78 (95% Crl 0.65 to 0.89) SS in favour of statin The posterior median estimate of the number need to treat was 28	⊕⊕⊕ MODERATE Study quality: -1 unclear allocation concealment and randomization in 4/9 trials, unprespecified subgroups in half the trials Consistency: OK Directness: OK Imprecision: OK				
Coronary heart disease mortality	19569 (9 studies)	RR= 0.70 (95%CrI 0.53 to 0.83) SS in favour of statin The posterior median estimate of the number need to treat was 34	⊕⊕⊕⊖ MODERATE Study quality: -1 unclear allocation concealment and randomization in 4/9 trials, unprespecified subgroups in half the trials Consistency: OK Directness: OK Imprecision: OK				
Nonfatal myocardial infarction	8872 (8 studies)	RR= 0.74 (95%CrI 0.60 to 0.89) SS in favour of statin The posterior median estimate of the number need to treat was 38	⊕ ⊕ ⊕ MODERATE Study quality: -1 unclear allocation concealment and randomization in 4/8 trials, unprespecified subgroups in half the trials Consistency: OK Directness: OK Imprecision: OK				
Stroke	17421 (5 studies)	RR= 0.75 (95%Crl 0.56 to 0.94) SS in favour of statin The posterior median estimate of the number need to treat was 58	HIGH Study quality:OK Consistency:OK Directness:OK Imprecision:OK				

This meta-analysis examined the effect of statin compared to placebo in elderly patients with established coronary heart disease. Data from 9 RCTs were included. The age range was 65 to 82 years. The mean age of this elderly population in the included trials however was relatively low: all trials reported a mean age of 70 years or less, except 1 trial (PROSPER 2002), in which the mean age was 75 years. We have not enough data on the very old (>80y). The mean weighted follow-up was 4.9 years.

In elderly patients with known coronary heart disease, statins reduce all-cause mortality compared to placebo (RR= 0.78; 95% CrI 0.65 to 0.89). *GRADE: MODERATE quality of evidence*

In this population, statins also reduce the risk of mortality due to coronary heart disease.

GRADE: MODERATE quality of evidence

In elderly patients with known coronary heart disease, statins reduce the risk of nonfatal myocardial infarction.

GRADE: MODERATE quality of evidence

Statins also reduce the risk of stroke in elderly patients with known coronary heart disease. *GRADE: HIGH quality of evidence*

4.1.7 All-cause mortality in observational studies

4.1.7.1 Evidence tables

Allonen 2012(77)							
Design	N/n	Population	Risk factor	Outcome	Results*		
prospective cohort	n=	-Caucasian origin	Statin non user	Mortality	HR:2.70 (95%Cl 1.49 - 4.90)		
study	1969	(purchase register of the Social Insurance Institution of	(n=94) Vs		SS p=0.001		
		Finland)	Statin regular user				
median follow-up of		-consecutive acute coronary syndrome (ACS) patients	(n=1200)				
23 months		- mean age : 66y					
		-female: 30.4%					
*adjusted for ACS type,	cerebrova	scular attack, diabetes, age, 3-artery disease, and cancer	•	•	•		

Study limitations: The register was based on medication purchases, which naturally does not guarantee the actual consumption of the medication, but regular consecutive purchases logically reflect it. During the follow-up, authors did not measure total cholesterol, low density lipoprotein cholesterol, or high-density lipoprotein cholesterol levels, which would have reflected the impact of statin medication use.

Design	N/n	Population	Risk factor	Outcome	Results*
prospective cohort study	n= 5647	-Mean age: 62 years	Baseline statin user	All cause mortality	11% vs 28%
		- 73%: men -patients who underwent	(n=4970)		
Median follow-up: 5.0 y		percutaneous coronary intervention (PCI)	vs baseline non-statin		HR: 0.49 (95%Cl 0.40-0.59)
		- Non-statin users were defined as those	user (n=677)		SS
The Netherlands		patients who did not use any statins one-			
(tertiary center)		month post-PCI.			
*adjusted for age, sex, indi	cation, prior	MI, prior PCI, prior CABG, diabetes, hypertens	ion, current smoking, family	history of coronary dise	ase, multivessel disease and the

Limitations:

-The reasons why 12 % of the patients did not receive a statin after the PCI procedure were unclear.

-As this study was originally not designed to evaluate statin therapy efficacy, hidden confounding could have been introduced.

- Referral cholesterol levels are not routinely measured anymore and LDL cholesterol values prior and after the PCI treatment were only available for approximately five percent of the patients. Therefore, no adjustments for LDL cholesterol levels in the analyses were done.

Design	N/n	Population	Risk factor	Outcome	Results*
multicenter, hospital- based, prospective observational study	n= 2822	- Japanese patients with first-ever ischemic stroke - Statin-users were defined as patients treated with	statin users (n = 993) vs nonusers (n =1829)	all cause mortality	HR: 0.67 (95%CI: 0.50 to 0.89) SS p=0.006
median follow-up time: 2.0 y		statins at discharge			

Limitations:

"Authors did not have information regarding compliance with statin use during the follow-up period, but non-compliance would have decreased the estimated effects of statin use. As this was an observational study, prescription of statins was determined by attending doctors, leading to confounding by indication. »

Palnum 2012(80)								
Design	N/n	Population	Risk factor	Outcome	Results*			
Design: prospective	n=28 612	patients hospitalized for ischemic	Statin use vs no statin	Death	HR: 0.45 (95%Cl 0.42–0.48)			
population based cohort		stroke in 2003 to 2006 from the	use		SS in favour of statin use			
		entire Danish population						
mean follow-up 2.7y								
* Adjusted for patient chara	acteristics (stroke s	everity, Charlson index, diabetes mellitu	us, atrial fibrillation, myoc	ardial infarction, hy	pertension, former stroke, intermittent			
claudication, quality of in-h	ospital care, smoki	ng, alcohol, type of residence, socioeco	nomic status, and civil stat	us				

Design	N/n	Population	Risk factor	Outcome	Results*
Prospective cohort study	n= 1816	-Latin American stable outpatients	Statin use at baseline	4-year all	HR: 0.49
		(62.3% men, mean age 67 years) with	Vs	cause	(95%CI 0.362 to 0.678)
Latin American cohort of the REACH registry		symptomatic atherothrombosis (87.1%) or with	No statin use at baseline	mortality	SS p<0.001
the nerver registry		multiple risk factors only (12.9%)			
		-Hyperchol-esterolemia present in			
		60% and 73.9% respectively			

The main limitations of this study are the reduced sample size and the lack of complete information for some characteristics at 4-year follow-up. Our study population is a very selected group at high cardiovascular risk that may not represent the whole Latin American population, especially the younger individuals in premorbid states. The main outcome events recorded during the follow-up were not centrally adjudicated, which may represent a flaw especially in assigning the category of death.

Kokkinos 2013(82)							
Design	N/n	Population	Risk factor	Outcome	Results*		
prospective cohort study median follow-up of 10y	n= 10043	dyslipidaemic veterans from Veterans Aff airs Medical Centers in Palo Alto, CA, and Washington DC, USA, -mean age 58,8 years	Statin use Vs no statin use	all-cause mortality	18.5% vs 27.7% SS p<0.0001		
*adjusted for age, body-ma	ass index, ethni	c origin, sex, history of cardiovascular diseas	i e, cardiovascular drugs	s, and cardiovascular r	isk factors.		

Lipworth 2013(83)								
Design	N/n	Population	Risk factor	Outcome	Results*			
Design: Prospective	67 385	Southeastern United states, self	statin use (self reported)	all-cause mortality	HR : 0.86; 95% CI 0.77–0.95			
cohort study		reported hypercholesterolaemia	versus no statin use		SS in favour of statin use			
Enrolled from 2002 - 2009								
Median follow-up 5.6y								
*Age used as timescale in Cox proportional hazards models. All models adjusted for year of SCCS enrollment; marital status; education; income; health insurance; BMI;								
cigarette smoking; alcohol o	consumption;	history of hypertension, MI/CABG, dia	betes, and stroke; and for race	and sex where appropriate	e			

4.1.7.2 Summary and conclusions. All-cause mortality in observational studies

We found several cohort studies that report all cause mortality in statin users versus non users.

Acute coronary syndrome

In a prospective cohort study by Allonen 2012(77), 1969 patients with acute coronary syndrome were followed for a median of 23 months after hospital discharge. Non-use of the prescribed statin was associated with a higher mortality rate compared to regular statin use (HR:2.70; 95%CI 1.49 - 4.90). No adjustments were made for important confounders (e.g. smoking, socio-economic ...). Other prognostic factors may be related to noncompliance.

Percutaneous coronary intervention (PCI)

In a prospective cohort study by Eindhoven 2012(78), 5647 patients who underwent PCI were followed for a median of 5 years. Statin use was associated with a lower risk of all-cause mortality compared to non use (11% vs 28%; HR: 0.49; 95%CI 0.40-0.59).

Stroke patients

-In a prospective cohort study by Makihara 2013(79), 2822 patients with first-even ischemic stroke were followed for a median of 2 y. Statin use (defined as treatment with statins at discharge) was associated with a lower risk of all-cause mortality compared to no statin use (patients who were not prescribed statins at discharge) (HR: 0.67;95%CI: 0.50 to 0.89).

- In a Danish population-based prospective cohort study by Palnum 2012(80), 28 612 patients that were hospitalized for stroke were followed for a mean of 2.7 years. Statin use was associated with a lower risk of mortality compared to no statin use (HR: 0.45; 95%CI 0.42–0.48).

High risk population

In a Latin-American prospective cohort study by Cantu-Brito 2012(81), 1816 patients with high cardiovascular risk were followed for 4 years. 87% had symptomatic atherothrombosis, 13% had multiple cardiovascular risk factors. Statin use at baseline was associated with a lower risk of 4-year all-cause mortality compared with no statin use at baseline (HR: 0.49; 95%CI 0.36 to 0.68).

Dyslipidaemia

-In a prospective cohort study by Kokkinos 2013(82) in 10 043 dyslipidaemic US veterans, followed for a median of 10 years, statin use was associated with a lower all-cause mortality rate compared to no statin use (18.5% vs 27.7%, p<0.0001).

- In a prospective cohort study by Lipworth 2013 in 67 358 patients with self-reported hypercholesterolaemia, followed a median of 5.6 years, statin use (self-reported) was associated with a lower risk of all-cause mortality compared to no statin use (self-reported), HR : 0.86; 95% CI 0.77–0.95.

Meta-analysis of observational studies and exploration of bias

Danaei 2012(84) published a meta-analysis of observational studies of statin use and mortality in primary prevention and in secondary prevention. When analyzing 4 studies in people with cardiovascular disease that compare incident users (new users) to non-users of a statin, the pooled,

multivariateadjusted mortality hazard ratio for statin use was 0.77 (95% CI 0.65 to 0.91). The hazard ration was 0.54 (95% CI: 0.45, 0.66) in 13 studies that compared prevalent users with nonusers. In primary prevention, the pooled hazard ratio from 2 observational studies for incident users versus non-users was 0.80 (95%CI: 0.63, 1.02). Data for studies of prevalent users were not pooled (lack of data).

The author states that the inclusion of prevalent users induces bias.

Conclusion

In observational studies, statin use is associated with a lower mortality rate. The magnitude of the risk decrease cannot reliably be estimated, since correction for all confounders is difficult. There may be prognostic factors associated with not using a statin that also influence mortality.

4.1.8 Mortality rates in open-label follow-up of RCTs

Several placebo-controlled trials have reported post-trial follow-up results. After the trials, statin use in the treatment arms is found to be similar (when reported).

In the HPS study(85), 20 536 patients at high risk of vascular and non-vascular outcomes were allocated to either 40 mg simvastatin daily or placebo and followed in-trial for a mean of 5.3y. Post trial follow-up of surviving patients yielded a mean total duration of 11y follow-up. After trial, statin use in both treatment arms was similar.

Mortality

During the post-trial period, vascular mortality rates were similar in both treatment groups (1019 [11.5%] vs 1007 [11.6%]; RR 0.98 [95% CI 0.90–1.07]; p=0.71), so in-trial survival gains persisted (as stated by the authors, but no calculations on total follow-up provided).

During the post-trial period, non-vascular mortality rates were similar in both treatment groups (943 [10.6%] vs 942 [10.9%]; RR 0.97 [95% Cl 0.89–1.06]; p=0.55),

Cancer

The incidence of a first diagnosis of any type of cancer(excluding, as prespecified, non-melanoma skin cancer) was similar throughout the in-trial and post-trial periods combined (1749 [17.0%] allocated simvastatin vs 1744 [17.0%] allocated placebo; RR 0.98 [0.92-1.05];p=0.60;

In the PROSPER trial(86), 5804 participants aged 70-82 years with either pre-existing vascular disease or increased risk of such disease because of smoking, hypertension or diabetes, were randomised to 40 mg pravastatin or matching placebo. In-trial follow-up was 3.2 years. Total mean follow up (+ post-trial follow up) was 8.6 years.

Mortality

All-cause mortality was not reduced in-trial, nor was it reduced in the total follow-up. Cardiovascular death was reduced in-trial, but not in the total follow-up

In the ALLHAT study(87), the authors conducted a randomized, controlled, multicenter trial, in which they assigned well-controlled hypertensive participants aged 55 years and older with moderate hypercholesterolemia to receive pravastatin (n=5170) or usual care (n=5185) for 4 to 8 years, when trial therapy was discontinued. After an average of 4.8 years of follow-up, there was no difference in the primary endpoint of all-cause mortality (hazard ratio [HR], 0.99; 95% confidence interval [CI], 0.89–1.11; P=.88)

Passive surveillance using national databases to ascertain deaths and hospitalizations continued for a total follow-up of 8 to 13 years to assess whether mortality and morbidity differences persisted or new differences developed. For the post-trial period, data are not available on treatments. No significant differences appeared in mortality for pravastatin vs usual care (hazard ratio [HR], 0.96; 95% confidence interval [CI], 0.89-1.03)

The ASCOT-LLA trial(88) included 10305 hypertensive patients that were randomized into either atorvastatin 10 mg daily or placebo.

Within the first 2 years of post-trial (open-label phase), approximately two-thirds of patients previously assigned either atorvastatin or placebo were taking lipid-lowering treatment. A median 11 years after initial randomization and 8 years after closure of LLA, during which

time most patients from both active and placebo treatment groups were taking statins, all-cause mortality (n = 520 and 460 in placebo and atorvastatin, respectively) remained significantly lower in those originally assigned atorvastatin (HR 0.86, Cl 0.76–0.98, P = 0.02). CV deaths were fewer, but not significant (HR 0.89, Cl 0.72–1.11, P = 0.32) and non-CV deaths were significantly lower (HR 0.85, Cl 0.73–0.99, P = 0.03) in those formerly assigned atorvastatin attributed to a reduction in deaths due to infection and respiratory illness

4.2 Higher dose statin versus lower dose statin

4.2.1 Evidence tables. Mills 2011 meta-analysis. Intensive statin dose versus clinically common dose

Intensive statin dosing vs clinically common dose of statin

Meta-analysis: Intensive statin therapy compared with moderate dosing for prevention of cardiovascular events: a meta-analysis of >40 000 patients Inclusion criteria: Any RCT evaluating a larger dose with a clinically common dose: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin for CVD therapeutic effects, Studies had to be of 6 months duration, had to report on any of the following clinically important cardiovascular outcomes: All-cause mortality; CVD mortality; coronary heart disease (CHD) death plus non-fatal myocardial infarction (MI); fatal MI; non-fatal MI; strokes; and non-CVD deaths. Search strategy: MEDLINE, EMBASE, Cochrane CENTRAL, AMED, CINAHL, TOXNET, Development and Reproductive Toxicology, Hazardous Substances Databank, Psych-info and Web of Science, databases that included the full text of journals In addition, searched the bibliographies of published systematic reviews and health technology assessments. Finally, searched the own comprehensive rolling database of statin trials, updated monthly. Searches were not limited by language, sex, or age. Assessment of quality of included trials: ves: "Study evaluation included general methodological quality features, including sequence-generation, blinding, use of intent-to-treat analysis, % follow-up and allocation concealment." ITT analysis: yes Other methodological remarks: performed random-effects meta-analysis and a trial sequential analysis also conducted an optimal information size analysis to determine the strength of information for the meta-analysis on the primary outcome of CVD death and CHD plus non-fatal MI to determine the conservative number of patients required to provide an authoritative answer of therapeutic efficacy **Optimal information size:**

the authors note that the evidence for CHD plus non-fatal MI reduction is conclusive at the 80% power level

Ref	Comparison	N/n	Outcomes	Result
ref*Mills	Intensive	N= 9	All-cause mortality	RR= 0.92 (95% CI 0.83 to 1.03)
2011(89)	statin dosing	n= 41760		p=0.14
	vs clinically	(A-Z 2004, IDEAL		NS
Design: MA	common dose	2005, PROVE-IT		l ² =38%
0	of statin	2004, REVERSAL		
Search date:		2004, TNT 2005,		
12/2010		Vascular basis.		
		2005, SAGE 2007,		
		SEARCH 2008,		
		Colivicchi 2010)		
		N=3	All-cause mortality	RR=0.75 (95% Cl 0.61 to 0.91)
		n= 8949	Subgroup analysis: acute coronary syndrome	P= 0.005
		(A-Z 2004,		SS in favour of intensive statin dosing
		PROVE-IT 2004,		² =0%
		Colivicchi 2010)		
		N= 7	CVD mortality/CV deaths	RR= 0.89 (95% CI 0.78 to 1.01)
		n= 40793		p=0.07
		(A-Z 2004, IDEAL		NS
		2005, PROVE-IT		l ² = 34%
		2004, TNT 2005,		
		SAGE 2007,		
		SEARCH 2008,		
		Colivicchi 2010)		
		N=3	CVD mortality/CV deaths	RR=0.74 (95% CI 0.59 to 0.94
		n= 8949	Subgroup analysis: acute coronary syndrome	p=0.013
		(A-Z 2004,		SS in favour of intensive statin dosing
		PROVE-IT 2004,		² =0%
		Colivicchi 2010)		
				Note: "Applying a weighted event rate NNT for CVD death, we
				estimate that 119 (95% CI, 63–1364) patients should be treated to
				prevent one event per year."
		N= 2	Fatal MIs	RR= 0.75 (95% CI 0.41 to 1.35)
		n= 12957		p=0.34

(SAGE 2007,		NS
SEARCH 2008	3)	
N=4	Non-CVD deaths	RR= 0.97 (95% Cl, 0.87 to 1.09)
n= 26342		p=0.65
(A-Z 2004, ID	EAL	NS
2005, SAGE 2	2007,	1 ² =0%
SEARCH 2008	3)	
Subgroup	Non-CVD deaths	RR=0.98 (95% CI 0.54 to 1.08)
N=1	analysis: acute coronary syndrome	p=0.96
n= 4497		NS
(A-Z 2004)		
N=1	Fatal strokes	RR=0.85 (95% CI 0.59 to 1.20)
n= 12064		NS
(SEARCH 200	8)	
N=5	Non-fatal MIs	RR=0.82 (95% CI 0.76 to 0.90)
n=32136		p ≤ 0.0001
(IDEAL 2005,	TNT	SS in favour of the intensive statin dosing.
2005, SAGE 2	2007,	1 ² =0%
SEARCH 2008	3,	
Colivicchi 20	10)	
N=1	Non-fatal MIs	RR=0.55 (95% CI 0.28 to 1.07)
n=290	Subgroup analysis: acute coronary syndrome	p=0.08
(Colivicchi 20)10)	NS
N=9	Composite endpoint of CHD mortality plus	RR=0.90 (95% CI 0.84 to 0.96)
n=31759	non-fatal MI	p ≤ 0.0001
(A-Z 2004, ID	EAL	SS in favour of the intensive statin dosing
2005, PROVE	-IT	l ² =0%
2004, REVER	SAL	
2004, Vascul	ar	Note: Applying a weighted event rate number needed to treat
basis. 2005, 9	SAGE	(NNT), we estimate that patients receiving intensive statin dosing for
2007, SEARC	н	secondary prevention have an NNT of 250 (95% Cl, 162–735) to
2008, Colivic	chi	prevent a CHD or non-fatal MI per year.
2010, Yu 200	7)	
N=3	Composite endpoint of CHD mortality plus	RR= 0.85 (95% CI 0.71 to 1.03)
n= 8949	non-fatal MI	p = 0.10
(A-Z 2004,	Subgroup analysis: acute coronary syndrome	NS

PROVE-IT 2004,		l ² =32%
Colivicchi 2010)		
N=10	Fatal and non-fatal strokes (excluding TIAs)	RR= 0.86 (95% CI 0.77 to 0.96)
n=41760		p =0.006
(A-Z 2004, IDEAL		SS in favour of the intensive statin dosing
2005, PROVE-IT		l ² = 0%
2004, REVERSAL		
2004, TNT 2005,		
Vascular basis.		
2005, SAGE 2007,		
SEARCH 2008,		
Colivicchi 2010,		
Yu 2007)		
N=5	Risk of cancer	RR=0.95 (95% CI 0.87 to 1.04)
n=28109		p=0.31
(A-Z 2004,		NS
REVERSAL 2004,		$1^2 = 0\%$
TNT 2005, SAGE		
2007, SEARCH		
2010)		
N=6	Incidence of rhabdomyolysis	RR= 1.70 (95% CI 0.56 to 5.19)
n=39902		p=0.34
(A-Z 2004, IDEAL		NS
2005, PROVE-IT		l ² =20%
2004, TNT 2005,		
SEARCH 2008,		
Colivicchi 2010)		
N=5 (A-Z 2004,	Increased AST beyond normal	RR= 3.15 (95% Cl 1.31 to 7.54)
IDEAL 2005,		p=0.01
REVERSAL 2004,		SS in favour of intensive statin dosing
TNT 2005, SAGE		l ² =53%
2007)		
N= 7	Increased ALT beyond normal	RR =1.57 (95% Cl 1.29 to 1.91)
n= 37289		p=0.002
(A-Z 2004, IDEAL		SS in favour of intensive statin dosing
2005, REVERSAL		l ² = 93%

2004, TNT 2005, SAGE 2007, SEARCH 2010, Colivicchi 2010)		
N=4	Risk of CK beyond normal	RR=2.86 (95% CI, 2.02–4.04)
n=21013		p= ≤ 0.001
(A-Z 2004,		SS in favour of intensive statin dosing,
PROVE-IT 2004,		but article says: 'We did not find a significant increase in risk of CK
SEARCH 2008,		beyond normal.'
Colivicchi 2010)		
		Note: In one trial (A-Z 2004) with highdose simvastatin, CK increases
		in 10 times the upper limit of normal associated with myopathy
		were more common with simvastatin 80 mg than simvastatin 40 mg
		(nine vs. one) and in one trial (Colvicchi 2010) of atorvastatin 80 mg,
		CK increases in two times the normal limit associated with myopathy
		required discontinuation of the drug in two patients.

* Characteristics of included studies: see below

Ref + design	n	Population	Duration	Comparison	Methodology
A-Z 2004(27)	4497	Patient status/condition at baseline:	2 y	Treatment	ALLOCATION CONC:
		Acute coronary syndrome		comparisons (mg/day):	Adequate
International,		Age, mean, years: 61		S40-80 vs. S0-20	RANDO:
randomized,		Men, %: 76			Adequate
double-blind trial		Prior CHD, %: 100		(40 mg/d of	BLINDING : double blinded
		Diabetes, %: 24		simvastatin for 1	
		Hypertension, %: 50		month followed by 80	FOLLOW-UP: adequate reporting
		Current smokers, %: 41		mg/d	33% discontinued prematurely
				vs	3% lost to follow-up or follow-up too short for
		Baseline, mean mg/dL (change):		placebo for 4 months	primary endpoints
		LDL:111 (-37)		followed by 20 mg/d of	
		HDL: 39 (-0.7)		simvastatin)	ITT:yes
					FUNDING: Merck
					note: lower start dose

					The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, readmission for ACS, and stroke.
IDEAL 2005(28) prospective, randomized, open- label, blinded end- point evaluation trial conducted at 190 ambulatory cardiology care and specialist practices in northern Europe	8888	Patient status/condition at baseline: CHD Age, mean, years:62 Men, %:81 Prior CHD, %: 100 Diabetes, %:12 Hypertension, %:33 Current smokers, %:21 Baseline, mean mg/dL (change): LDL:121 (-22) HDL:46 (-0.5)	4.8y	high dose of atorvastatin (80 mg/d), versus usual-dose simvastatin (20 mg/d)	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : endpoint-evaluation FOLLOW-UP: <1% lost to follow-up ITT:yes FUNDING: Pfizer note: no run-in Main Outcome Measure: Occurrence of a major coronary event, defined as coronary death, confirmed nonfatal acute MI, or cardiac arrest with resuscitation
PROVE-IT 2004(29) RCT, double blind Noninferiority trial	4162	Patient status/condition at baseline: Acute coronary syndrome Age, mean, years:58 Men, %:78 Prior CHD, %: 100 Diabetes, %:18 Hypertension, %:50 Current smokers, %:37 Baseline, mean mg/dL (change): LDL:106 (-33) HDL:39 (0.65)	Follow-up lasted 18 to 36 months (mean, 2y)	40 mg of pravastatin daily (standard therapy) versus 80 mg of atorvastatin daily (intensive therapy)	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : double blind FOLLOW-UP: - The rates of discontinuation of treatment because of an adverse event or the patient's preference or for other reasons were 21.4 percent in the pravastatin group and 22.8 percent in the atorvastatin group at one year (P=0.30) and 33.0 percent and 30.4 percent, respectively, at two years (P=0.11). - 0.2% lost to follow-up

REVERSAL 2004(90) double blind RCT	654	Patient status/condition at baseline: Atherosclerotic Age, mean, years:56 Men, %: 72 Prior CHD, %: 100 Diabetes, %:19 Hypertension, %:69 Current smokers, %:26 Baseline, mean mg/dL (change): LDL:150 (-32) HDL:43 (0.7)	1.5y	Treatment comparisons (mg/day): A80 vs. P40	ITT:yes FUNDING: ? note: no run-in The primary end point was a composite of death from any cause, myocardial infarction, documented unstable angina requiring rehospitalization, revascularization (performed at least 30 days after randomization), and stroke ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : double blind FOLLOW-UP: "Adequate follow-up was reported in all trials" ITT: yes, for these endpoints FUNDING: Pfizer primary endpoint: coronary disease progression on intravascular ultrasound note: 2 week placebo run-in. 21% (176/833) of eligible participants did not meet criteria after run- in
TNT 2005(31) double blind RCT	10001	Patient status/condition at baseline: CHD Age, mean, years:61 Men, %:81 Prior CHD, %: 100 Diabetes, %:15 Hypertension, %:54 Current smokers, %:13	median 4.9y	10 mg atorvastatin versus 80 mg atorvastatin patients with LDL cholesterol levels	ALLOCATION CONC: unclear RANDO: unclear BLINDING : 'double blind', blinded assessors FOLLOW-UP: 35% excluded after run-in (mainly due to not meeting randomization criteria)

				h at war an 120 and 250	2 CO/ of evolution of must in motion to be did to the
		Baseline, mean mg/dL (change):		between 130 and 250	3.6% of excluded run-in patients had ischemic
		LDL:98 (-22)		mg per deciliter (3.4	event
		HDL:47 (0)		and 6.5 mmol per liter,	3.6% of excluded run-in patients had adverse
				respectively) and	events
				triglyceride levels of	<1% lost to follow-up
				600 mg per deciliter	ITT:yes
				(6.8 mmol per liter) or	FUNDING: Industry-funded
				less entered an eight-	
				week run-in period of	note: washout period of one to eight weeks
				open-label treatment	eight-week run-in period of open-label treatment
				with 10 mg of	with 10 mg of atorvastatin per day.
				atorvastatin per day.	
				At the end of the run-	The primary end point was the occurrence of a first
				in	major cardiovascular event, defined as death from
				phase (week 0),	CHD, nonfatal non-procedure-related myocardial
				patients with a mean	infarction, resuscitation after cardiac arrest, or fatal
				LDL cholesterol level of	or nonfatal stroke.
				less than 130 mg per	
				deciliter (3.4 mmol per	
				liter) (determined four	
				weeks and two weeks	
				before randomization)	
				were randomly	
				assigned to double-	
				blind therapy with	
				either 10 mg or 80 mg	
				of atorvastatin per day.	
Vascular basis.	199	Patient status/condition at baseline:	1y	Treatment	ALLOCATION CONC:
2005/Stone		CHD	-,	comparisons (mg/day):	unclear
2005(91)		Age, mean, years: -		80 mg atorvastatin vs	RANDO:
double blind		Men, %:86		5mg lovastatin	unclear
RCT		Prior CHD, %: 100			BLINDING : 'double blind'
		Diabetes, %:16		(note: 1 other	
		Hypertension, %:64		treatment arm	FOLLOW-UP: 7% stopped early for reasons other
		Current smokers, %:0		Atorvastatin 80 mg +	than adverse events
				vit C and E)	
		Baseline, mean mg/dL (change):			ITT: no
		baseline, mean mg/ul (change).			111.110

		LDL:148 (-33) HDL:45 (7.0)			FUNDING: NIH grant and unrestricted grant from Pfizer primary endpoint: ambulatory ECG ischemia note: no run-in
SAGE 2007(92) double blind RCT	893	Patient status/condition at baseline: CHD Age, mean, years:72 Men, %:69 Prior CHD, %: 100 Diabetes, %:23 Hypertension, %:65 Current smokers, %:6 Baseline, mean mg/dL (change): LDL:147 (-30) HDL:46 (11)	1y	Treatment comparisons (mg/day): A80 vs. P40	ALLOCATION CONC: unclear RANDO: unclear BLINDING : Participants/personnel/assessors: yes FOLLOW-UP: 5% withdrawn due to lack of compliance or other reasons. 84% completed study ITT:yes no FUNDING: Pfizer primary endpoint: total duration of ischemia at month 12) note: washout period of 6 weeks no run-in
Yu 2007(93) double blind RCT	112	Patient status/condition at baseline: CHD Age, mean, years:66 Men, %:82 Prior CHD, %: 100 Diabetes, %:28 Hypertension, %:51 Current smokers, %:44 Baseline, mean mg/dL (change): LDL:116 (-39) HDL:50 (26)	0.5y	Treatment comparisons (mg/day): A80 vs. A10	ALLOCATION CONC: Adequate RANDO: unclear BLINDING : Participants/personnel/assessors yes FOLLOW-UP: 4% excluded from analysis due to raised CK or liver enzymes ITT:no

				FUNDING: Pfizer
				primary endpoint: carotid intimal-medial thickness
				note: 1 week washout phase
290	Patient status/condition at baseline: Acute coronary syndrome Age, mean, years:74 Men, %:52 Prior CHD, %: 100 Diabetes, %:71 Hypertension, %:89 Current smokers, %:- Baseline, mean mg/dL (change): LDL:126 (-64) HDL:40 (-)	1γ	Treatment comparisons (mg/day): A80 vs. A20/40	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : assessors FOLLOW-UP: "Adequate follow-up was reported in all trials" ITT:yes FUNDING: ? Primary end point event (combination of cardiovascular death, non-fatal acute myocardial reinfarction and disabling stroke within 12 months of randomisation)
12064	Patient status/condition at baseline: CHD Age, mean, years: - Men, %:83 Prior CHD, %: 100 Diabetes, %:- Hypertension, %:- Current smokers, %:- Baseline, mean mg/dL (change): LDL:97 (-14) HDL:39 (-)	6.7y	Treatment comparisons (mg/day): S80 vs. S20	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : yes FOLLOW-UP: 37% not eligible after run-in phase 2% lost to follow-up 30% stopping before end of study ITT:yes FUNDING: Merck
	290	Acute coronary syndrome Age, mean, years:74 Men, %:52 Prior CHD, %: 100 Diabetes, %:71 Hypertension, %:89 Current smokers, %:-Baseline, mean mg/dL (change): LDL:126 (-64) HDL:40 (-)12064Patient status/condition at baseline: CHD Age, mean, years: - Men, %:83 Prior CHD, %: 100 Diabetes, %:- Hypertension, %:- Current smokers, %:-Baseline, mean mg/dL (change): LDL:126 (-64) HDL:40 (-)	Acute coronary syndrome Age, mean, years:74 Men, %:52 Prior CHD, %: 100 Diabetes, %:71 Hypertension, %:89 Current smokers, %:-Image: Second Se	Acute coronary syndrome Age, mean, years:74 Men, %:52 Prior CHD, %: 100 Diabetes, %:71 Hypertension, %:89 Current smokers, %:-comparisons (mg/day): A80 vs. A20/40Baseline, mean mg/dL (change): LDL:126 (-64) HDL:40 (-)Baseline, mean mg/dL (change): LDL:126 (-64) HDL:40 (-)6.7yTreatment comparisons (mg/day): S80 vs. S2012064Patient status/condition at baseline: CHD Age, mean, years: - Men, %:83 Prior CHD, %: 100 Diabetes, %:- Hypertension, %:- Baseline, mean mg/dL (change): LDL:97 (-14)6.7yTreatment comparisons (mg/day): S80 vs. S20

		The primary endpoint was major vascular events, defined as coronary death, myocardial infarction, stroke, or arterial revascularization
		a prerandomisation run-in phase of treatment with 20 mg simvastatin daily (and placebo vitamins)

Remarks:

Some inconsistencies between written results and forest plots as to included trials.

Higher dose statin versus moderater dose statin						
Bibliography: Meta-analysis: Mills 2011(89)						
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)			
All-cause mortality	41 760 (9 studies) 1y-6.7y	RR= 0.92 (95% CI 0.83 to 1.03) NS	⊕⊕⊕⊖ MODERATE Study quality: -1 statin run-in in half the participants (2 trials) Consistency: OK Directness: OK, see study quality Imprecision: OK			
CVD mortality	40 793 (7 studies) 1y-6.7y	RR= 0.89 (95% CI 0.78 to 1.01) NS	⊕⊕⊕⊖ MODERATE Study quality: -1 statin run-in in half the participants (2 trials) Consistency: OK Directness: OK, see study quality Imprecision: OK			
Composite endpoint of CHD mortality plus non- fatal MI	31 759 (9 studies) 1y-6.7y	RR=0.90 (95% CI 0.84 to 0.96) SS in favour of the intensive statin dosing NNT= 250(95%CI 162-735) (based on weighted event rate)	 ⊕ ⊕ ⊕ O MODERATE Study quality: -1 statin run-in in 1/3 participants (2 trials) Consistency: OK Directness: OK, see study quality Imprecision: OK 			
Fatal and non-fatal strokes (excluding TIAs)	41 760 (10 studies) 6m-6.7y	RR= 0.86 (95% CI 0.77 to 0.96) SS in favour of the intensive statin dosing	⊕⊕⊕⊖ MODERATE Study quality: -1 statin run-in in half the participants (2 trials) Consistency: OK Directness: OK, see study quality Imprecision: OK			
Cancer	28 109 (5 studies) 1y-6.7y	RR=0.95 (95% CI 0.87 to 1.04) NS	⊕⊕⊕⊖ MODERATE Study quality:-1 relatively short FU for this outcome Consistency: OK Directness: OK Imprecision: OK			
Rhabdomyolysis	39 902 (6 studies) 1y-4.9y	RR= 1.70 (95% CI 0.56 to 5.19) NS	⊕⊕⊖⊖ LOW Study quality: -1 statin run-in in 1/3 participants (2 trials) Consistency:OK Directness:OK Imprecision:-1			

4.2.2 Summary and conclusions. Mills 2011 meta-analysis. Intensive statin dose versus clinically common dose

This meta-analysis compares high dose statin versus a lower dose statin for cardiovascular disease prevention. Participants in all included trials had a history of cardiovascular disease, mainly coronary heart disease.

The high dose statin was atorvastatin 80 mg in most trials, and simvastatin 40mg or 80 mg in 2 trials. The lower dose statin was either simvastatin 20 mg, atorvastatin 10/20/40 mg, pravastatin 40 mg or lovastatin 5 mg.

Trial duration ranged from 6 months (1 smaller trial) to 6.7 years. Mean age ranged from 56y to 74y.

In this population, there is no statistically significant difference in all-cause mortality between high dose statin and lower dose statin, nor is there a statistically significant difference in mortality from cardiovascular disease.

GRADE: MODERATE quality of evidence

There is a lower risk of the composite endpoint of death from coronary heart disease or nonfatal myocardial infarction with higher dose statin. The authors calculate that 250 patients have to be treated with a high dose statin instead of a lower dose, to prevent 1 additional event (for a mean duration of 1 to 6.7 years).

GRADE: MODERATE quality of evidence

The risk of all stroke (fatal and nonfatal) is reduced with higher dose statin compared to lower dose statin.

GRADE: MODERATE quality of evidence

No significant difference in cancer rates is observed between both treatment groups *GRADE: MODERATE quality of evidence*

No significant difference in rhabdomyolysis is found between treatment with higher dose statin compared to lower dose statin. *GRADE: LOW quality of evidence*

4.2.3 Evidence tables. CTT 2012 Individual patient data meta-analysis

Statin versus control (22 trials) and statin high dose versus statin low dose (5 trials)

Meta-analysis of individual patient data

Inclusion criteria

- RCT
- Lipid modification therapy at least 1 treatment arm, no multiple interventions
- >= 2y scheduled duration
- Aim >= 1000 patients
- Results not known at time of protocol description (1995)

<u>Search strategy</u> "Potentially eligible studies are to be identified prospectively by a range of methods, including computer-aided literature searches, manual searches of journals, scrutiny of the reference lists of trials and review articles, scrutiny of abstracts and meeting proceedings, collaboration with the trial register of the International Committee on Thrombosis and Haemostasis, and by inquiry among colleagues, collaborators, and manufacturers of lipid-modifying agents."

Note: no further information on the methods of the computer-aided literature search

Assessment of quality of included trials: no

ITT analysis: yes

Other methodological remarks

- Risk modelling calculation with cox proportional hazards model
- No mention of analysis according to baseline risk in original protocol.
- Meta-analyses were weighted by the absolute LDL cholesterol difference in that trial at 1 year (mmol/l)
- Authors' note: Predicted risk compared well with observed risk for each trial, as well as within each 5-year risk group.
- Authors' note: Individual participant data were unavailable from only two eligible trials in 6331 higher-risk patients with pre-existing vascular disease (SPARCL36 and GREACE37)..

Ref	Comparison	N/n	Outcomes	Result	
CTT 2012	Statins high	N= 5		5-y MVE risk at	RR (CI) per 1.0 mmol/L reduction in LDL
	Vs	n= 39 612		baseline	cholesterol
Design: MA	Statins low		Major vascular event (major coronary events	≥10% to <20%	0.75 (0.61 – 0.92)
			(ie, non-fatal myocardial infarction or	≥20% to <30%	0.70 (0.59 – 0.83)
Search date:			coronary death), strokes, or coronary	≥30%	0.72 (0.59 – 0.88)
(june 2011)			revascularisations	Overall	0.72 (0.66 – 0.78) p<0.0001
			Major coronary event (non-fatal myocardial	≥10% to <20%	0.79 (0.57 – 1.10)
			infarction or coronary death)	≥20% to <30%	0.68 (0.52 – 0.89)
				≥30%	0.80 (0.59 – 1.09)
				Overall	0.74 (0.65 – 0.85) p<0.0001
			Any stroke	≥10% to <20%	0.90 (0.51 – 1.59)
				≥20% to <30%	0.69 (0.44 – 1.09)
				≥30%	0.70 (0.42 – 1.18)
				Overall	0.74 (0.59 – 0.92) p= 0.007

Webfigure 6: Effects on major coronary events, strokes, coronary revascularisation procedures and major vascular events per 1.0 mmol/L reduction in LDL cholesterol at different levels of risk in the 5 trials of more vs less statin

5−year MVE risk, less statin	Events (% More statin	per annum) Less statin	RR (CI) per 1.0 mm	ol/L reduction in LDL cholesterol	Trend test
Major coronary eve	nt		1		
≥ 10%,<20%*	700 (1.49)	757 (1.61)			
≥ 20%,<30%	634 (1.92)	756 (2.35)		0.68 (0.52 - 0.89)	$\chi_1^2 = 0.01$
$\geq 30\%$	391 (3.67)	460 (4.19)	<u>+</u> •	- 0.80 (0.59 - 1.09)	(p=0.9)
Overall	1725 (1.90)	1973 (2.19)		0.74 (0.65 – 0.85) p<0.0001	
Any stroke					
≥ 10%,<20%*	220 (0.46)	232 (0.49)		→ 0.90 (0.51 - 1.59)	
≥ 20%,<30%	217 (0.65)	254 (0.77)	<	- 0.69 (0.44 - 1.09)	$\chi^2_1 = 0.63$
≥ 30%	135 (1.23)	177 (1.56)	<¦	0.70 (0.42 - 1.18)	(p=0.4)
Overall	572 (0.62)	663 (0.72)		0.74 (0.59 – 0.92) p= 0.007	
Coronary revascula	risation				
≥ 10%,<20%*	830 (1.82)	973 (2.15)		0.66 (0.51 - 0.86)	
≥ 20%,<30%	917 (2.92)	1115 (3.68)		0.66 (0.54 - 0.81)	$\chi_1^2 = 0.01$
≥ 30%	503 (4.98)	653 (6.40)	i	0.65 (0.51 - 0.84)	(p=0.9)
Overall	2250 (2.58)	2741 (3.20)	- 0	0.66 (0.60 – 0.73) p<0.0001	
Major vascular ever	nt		.		
≥ 10%,<20%*	1489 (3.35)	1636 (3.71)		0.75 (0.61 - 0.92)	
≥20%,<30%	1501 (4.93)	1744 (5.95)	_ _	0.70 (0.59 - 0.83)	$\chi_1^2 = 0.12$
$\geq 30\%$	847 (8.79)	1036 (10.74)	_ +	0.72 (0.59 - 0.88)	(p=0.7)
Overall	3837 (4.54)	4416 (5.32)	- -	0.72 (0.66 – 0.78) p<0.0001	
			0.5 0.75 1	1.25 1.5	
- 99% or	95% limits		More statin better	Less statin better	
*Includes 141 partici	nants (48 from A	to Z and 93 from SE		5-year risk of MVE less than 10%	

*Includes 141 participants (48 from A to Z and 93 from SEARCH) with an estimated 5-year risk of MVE less than 10%.

* Characteristics of included studies: see below

statin high dose versus	statin low	v dose (5 trials)			
A to Z	4497	Patients with acute coronary syndrome	Follow-up was for	40 mg/d of simvastatin for 1	ALLOCATION CONC:
2004		(ACS)	at least 6 months	month followed by 80 mg/d	Adequate
International,		Age, mean, years: 61	and up to 24	vs	RANDO:
randomized, double-		Men, %: 76	months	placebo for 4 months	Adequate
blind trial		Prior CHD, %: 100 Diabetes, %: 24		followed by 20 mg/d of simvastatin	BLINDING : double blinded
		Hypertension, %: 50			FOLLOW-UP: adequate reporting
		Current smokers, %: 41			33% discontinued prematurely
		,			3% lost to follow-up or follow-up too
		Baseline, mean mg/dL (change): LDL:111 (-37)			short for primary endpoints
		HDL: 39 (-0.7)			ITT:yes
					FUNDING: Merck
					note: lower start dose
					The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, readmission for ACS, and stroke.
IDEAL	8888	Patients aged 80 years or younger with a	Median follow-up	high dose of atorvastatin (80	ALLOCATION CONC:
2005		history of acute MI	of 4.8 years	mg/d),	Adequate
		,	,	versus	RANDO:
prospective,		Age, mean, years:62		usual-dose simvastatin (20	Adequate
randomized, open-		Men, %:81		mg/d)	BLINDING : endpoint-evaluation
label, blinded end-		Prior CHD, %: 100			
point evaluation trial		Diabetes, %:12			FOLLOW-UP: <1% lost to follow-up
conducted at 190		Hypertension, %:33			ITT:yes
ambulatory cardiology care and specialist		Current smokers, %:21			FUNDING: Pfizer
practices in northern Europe		Baseline, mean mg/dL (change): LDL:121 (-22)			note: no run-in
		HDL:46 (-0.5)			Main Outcome Measure: Occurrence

					of a major coronary event, defined as coronary death, confirmed nonfatal acute MI, or cardiac arrest with resuscitation
PROVE-IT	4162	Patients who had been hospitalized for an	Follow-up lasted	40 mg of pravastatin daily	ALLOCATION CONC:
2004		acute coronary syndrome within the	18 to 36 months	(standard therapy)	Adequate
		preceding 10 days	(mean, 24)	versus	RANDO:
RCT, Noninferiority				80 mg of atorvastatin daily	Adequate
trial		Age, mean, years:58		(intensive therapy)	BLINDING : double blind
		Men, %:78			
		Prior CHD, %: 100			FOLLOW-UP:
		Diabetes, %:18			- The rates of discontinuation
		Hypertension, %:50			of treatment because of an
		Current smokers, %:37			adverse event or the
					patient's preference or for
		Baseline, mean mg/dL (change):			other reasons were 21.4
		LDL:106 (-33)			percent in the pravastatin
		HDL:39 (0.65)			group and 22.8 percent in
					the atorvastatin group at one
					year (P=0.30) and 33.0
					percent and 30.4 percent,
					respectively, at two years
					(P=0.11). - 0.2% lost to follow-up
					- 0.2% lost to follow-up
					ITT:yes
					FUNDING: ?
					note: no run-in
					The primary end point was a
					composite of death from any cause,
					myocardial infarction, documented
					unstable angina requiring
					rehospitalization, revascularization
					(performed at least 30 days after
					randomization), and stroke

SEARCH	12064	Men and women aged 18-80 years with a	Mean follow-up	80 mg simvastatin	ALLOCATION CONC:
2010		history of myocardial infarction, were	of 6.7 (SD 1.5)	versus	Adequate
		either currently on or had clear indication	years	20 mg simvastatin	RANDO:
double-blind		for statin therapy, and had a total	,		Adequate
randomised trial		cholesterol concentration of at least 3.5			BLINDING : yes
		mmol/L if already on a statin or 4.5			
		mmol/L if not			FOLLOW-UP:
					37% not eligible after run-in phase
		Age, mean, years: -			2% lost to follow-up
		Men, %:83			30% stopping before end of study
		Prior CHD, %: 100			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Diabetes, %:-			ITT:yes
		Hypertension, %:-			
		Current smokers, %:-			FUNDING: Merck
		Baseline, mean mg/dL (change):			The primary endpoint was major
		LDL:97 (-14)			vascular events, defined as coronary
		HDL:39 (-)			death, myocardial infarction, stroke,
		HDL.39 (-)			or arterial revascularisation
TNT	10001	patients with clinically evident CHD and	median of 4.9		ALLOCATION CONC:
2005	10001	LDL cholesterol levels of less than 130 mg		10 mg atorvastatin versus	unclear
2005		per deciliter (3.4 mmol per liter)	years.	80 mg atorvastatin	RANDO:
double blind RCT		per decinter (5.4 minor per inter)		80 mg atorvastatin	unclear
		Ago moon voors(C1			BLINDING : 'double blind', blinded
		Age, mean, years:61 Men, %:81			,
		Prior CHD, %: 100			assessors
		Diabetes, %:15			FOLLOW-UP:
		Hypertension, %:54			35% excluded after run-in (mainly due
		Current smokers, %:13			
		Current smokers, %:13			to not meeting randomization criteria) 3.6% of excluded run-in patients
		Baseline, mean mg/dL (change):			had ischemic event
		LDL:98 (-22)			3.6% of excluded run-in patients
		HDL:47 (0)			had adverse events
					<1% lost to follow-up
					ITT:yes
					FUNDING: Industry-funded
					i onomo. muusu y-tunueu

		note: washout period of one to eight weeks eight-week run-in period of open- label treatment with 10 mg of atorvastatin per day.
		The primary end point was the occurrence of a first major cardiovascular event, defined as death from CHD, nonfatal non- procedure-related myocardial infarction, resuscitation after cardiac arrest, or fatal or nonfatal stroke.

Bibliography: Individ	ual patient data met	ta-analysis: CTT 2012(4)	
Outcomes	N° of participants (studies) Follow up	Results RR (CI) per 1·0 mmol/L reduction in LDL	Quality of the evidence (GRADE)
Major vascular event: major coronary events (ie, non-fatal myocardial infarction or coronary death), strokes, or coronary revascularisations	39 612 (5 studies)	HR= 0.72 (0.66 – 0.78) SS in favour of high dose SS in 3 highest 5-y MVE risk category subgroups (insufficient patients in 2 lowest risk groups)	Not applied
Major coronary event: non-fatal myocardial infarction or coronary death	39 612 (5 studies)	HR=0.74 (0.65 – 0.85) SS in favour of high dose SS in 5-y MVE risk group of ≥20% to <30%	Not applied
Any stroke	39 612 (5 studies)	HR= 0.74 (0.59 – 0.92) SS in favour of statin NS in all 5y MVE risk groups	Not applied

4.2.4 Summary and conclusions: CTT 2012. Individual patient data meta-analysis

High dose statin versus low dose statin.

Individual patient data from 5 trials were included. There were very few patients with a baseline risk of a major vascular event of less than 10%. All included patients had a history of cardiovascular disease.

In this population, there is a statistically significant decrease* in major vascular events with high dose compared to a lower dose of statin. A statistically significant decrease in major vascular events is also observed in the 3 highest MVE risk categories.

GRADE: not applied

High dose statin results in a reduction of major coronary events compared to low dose statin. A statistically significant reduction in major coronary events was also observed in the subgroup of patients with a 5y MVE risk of ≥20% to <30%.

GRADE: not applied

High dose statin reduces the risk of stroke compared to low dose statin. In the different 5y MVE subgroups, the result was not statistically significant. GRADE: not applied

*Reduction per 1.0 mmol/L reduction in LDL-cholesterol

4.3 Statin versus fibrate

No studies found

4.4 Statin versus ezetimibe

No studies found

5 Evidence tables and conclusions: efficacy of other lipid-lowering drugs

5.1 Fibrate versus placebo

5.1.1 Evidence tables

Meta-analysis:

Inclusion criteria: prospective randomised controlled trials assessing the effects of fibrates on cardiovascular outcomes compared with placebo. The search was limited to randomised controlled trials with at least 100 patient- years of follow-up in each group, but without language restriction

<u>Search strategy</u>: a systematic review of the published work according to the PRISMA statement for the conduct of meta-analyses of intervention studies. Relevant studies were identified by searching the following data sources: Medline via Ovid (from 1950 to March, 2010), Embase (from 1966 to March, 2010), and the Cochrane Library database (Cochrane Central Register of Controlled Trials; no date restriction),

<u>Assessment of quality of included trials</u>: yes, Study quality was judged by the proper conduct of randomisation, concealment of treatment allocation, similarity of treatment groups at baseline, the provision of a description of the eligibility criteria, completeness of follow-up, and use of intention-to-treat analysis, and was quantified with the Jadad score. Potential publication bias was assessed with the Egger test and represented graphically with Begg funnel plots of the natural log of the RR versus its SE.

ITT analysis: yes

Other methodological remarks:

Summary estimates of RR ratios were obtained with a random effects model

The percentage of variability across studies attributable to heterogeneity beyond chance was estimated with the I² statistic

A cumulative meta-analysis was done to identify any trends in the effect of fibrates over time.

Funding National Health and Medical Research Council of Australia.

l/n	Outcomes	Result
i= 5 = 19944 /A CO-OP Atherosclerosis 973, VA-HIT 1999, Leader 2002, Field 2005, ACCORD 2010)	Major cardiovascular outcomes ¹ (defined as a composite including both myocardial infarction and stroke)	Fibrate: 1355/9975 (13.6%) Pla: 1515/9969 (15.2%) RR = 0.90(95% CI 0.82 to 1.00) SS in favor of treatment (fibrate) p =0.048
= 16 = 44667 Newcastle-Tyne clofibrate trial 1971, IHD prevention lofibrate trial 1971, VA CO-OP Atherosclerosis 1973, oronary Drug Project 1975, WHO CO-OP Trial 1978, lekinki Heart 1987, Hanefeld et al 1991 BECAIT 1997	Coronary events (myocardial infarction and coronary death)	Fibrate 1871/21503 (8.4%) Pla: 2681/23164 (11.7%) RR = 0.87(95% CI 0.81 to 0.93) SS in favor of treatment (fibrate) p <0.0001
oronary D		rug Project 1975, WHO CO-OP Trial 1978,

46-68 years		LOCAT 1997, SENDCAP 1998, VA-HIT 1999, BIP 2000, DAIS		
	Age range :	2001, LEADER 2002, FIELD 2005, ACCORD 2010)		
	46-68 years	N= 16	All-cause mortality	RR = 0.87(95% CI 0.93 to 1.08)
		n= 44813		NS
		(Newcastle-Tyne clofibrate trial 1971, IHD prevention		p=0.918
		clofibrate trial 1971, Acheson and Hutchinson 1972, VA CO-		
		OP Atherosclerosis 1973, Coronary Drug Project 1975,		
		WHO CO-OP Trial 1978, Helsinki Heart 1987, Hanefeld et al		
		1991, LOCAT 1997, VA-HIT 1999, BIP 2000, DAIS 2001,		
		LEADER 2002, FIELD 2005, Emmerich et al 2009, ACCORD		
		2010)		
		N= 6	Cardiovascular death	RR = 0.97(95% CI 0.88 to 1.07)
		n= 22066		p=0.587
		(VA CO-OP Atherosclerosis 1973, Coronary Drug Project		NS
		1975, Hanefeld et al 1991, LEADER 2001, FIELD 2005,		
		ACCORD 2010)		
		N= 8	Total stroke	RR = 1.03(95% CI 0.91 to 1.16
		n= 27021		p=0.687
		(Acheson and Hutchinson 1972, VA CO-OP Atherosclerosis		NS
		1973, Coronary Drug Project 1975, VA-HIT 1999, BIP 2000,		
	LEADER 2001, FIELD 2005, ACCORD 2010)			
		N= 4	Total adverse events	RR =1.21 (95% CI 0.91 to 1.61);
		n= 17413		p=0.19
		(VA CO-OP Atherosclerosis 1973, LEADER 2002, FIELD 2005,		NS
		ACCORD 2010)		

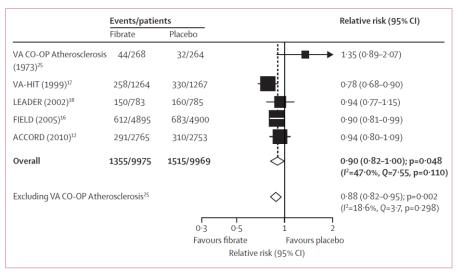
1)Authors noted some evidence of heterogeneity(I2=47•0%, Q=7•55, p=0•110) in the magnitude of the effect across the included studies, which was mostly attributable to the VA CO-OP Atherosclerosis study—a trial that specifically included individuals with preexisting cerebrovascular disease. A sensitivity analysis excluding the VA CO-OP Atherosclerosis study resulted in a similar estimate of effect of 12% RR reduction with a much reduced I2 value of 18 • 6%.

Formal statistical testing showed no evidence of publication bias for the outcome of major cardiovascular outcomes (Egger's test $p=0 \cdot 94$; webappendix p 4), but we noted evidence of publication bias for the coronary outcome (Egger's test $p=0 \cdot 035$; webappendix p 5). The conclusions were not changed after adjustment for publication bias with the trim and fi ll method34 (data not shown).

* Characteristics of included studies: see below

Ref + design	n	Population	Duration	Comparison	Methodology
Group of physicians of	497	Secondary prevention	5y	Clofibrate	ALLOCATION CONC: Unclear
the Newcastle upon		Mean age: 53y		(1.5–2 g daily) vs	RANDO: Adequate
Tyne region				Corn oil	DOUBLE BLINDING described : yes
(1971)(96)		Inclusion criteria: History of		placebo	FOLLOW-UP: described: yes
(10) 1/(00)		symptoms of IHD			COMPLETION RATE: 82.0/88.5
Randomised,		Excluded diabetics on OHG or			(treatment/placebo)
•		insulin			ITT described :yes
multicentre;					FUNDING: ?
Great Britain		80% men			Jadad: 4
Research committee	717	Secondary prevention	бу	Clofibrate	ALLOCATION CONC: unclear
of Scottish society of				(1·6– 2 g daily)	RANDO: unclear
, physicians (1971)(97)		Age 40–69 y; fi rst MI 8–16 w		vs	DOUBLE BLINDING described : incomplete
p,o.c.c		before trial, <24 m of angina		Olive oil	FOLLOW-UP: described: yes
Randomised,		or angina of >3 m, <2 y with		placebo	COMPLETION RATE: 79.99/81
multicentre;		ECG changes of angina but			(treatment/placebo)
Scotland		not of previous MI			ITT described: no
Scotland					FUNDING:?
		83% men			Jadad=1
Acheson and	95	Secondary prevention	8 y 8 m in	Clofibrate	ALLOCATION CONC:unclear
Hutchinson			treatment	(1–2 g daily)	RANDO: inadequate
(1972)(49)		History of focal cerebral	group;	VS	DOUBLE BLINDING described : yes
		vascular disease	7 y 7m in	Corn oil	FOLLOW-UP: described:no
Randomised,			placebo	then	COMPLETION RATE: NR
unspecified number		68% men	group	unspecified	(treatment/placebo)
of centres;				placebo	ITT described: no
,		Excluded			FUNDING:?
Great Britain		severe			Jadad=0
		diabetics			
Veterans	532	Secondary prevention	21·6 m in	Clofibrate	ALLOCATION CONC:
Administration			placebo	(2 g daily)	unclear
Cooperative Study		Male veteran, cerebral I or TIA	group;	VS	RANDO:
Group (1973) (98)		within 12 m	21.9	Lactose	unclear

Randomised, multicentre; USA		100% men 24% diabetics	m in treated group	placebo	DOUBLE BLINDING described : no FOLLOW-UP: described:yes COMPLETION RATE :73.9/78.4 (treatment/placebo) ITT described: yes FUNDING:? Jadad=1
Coronary Drug Project Research Group (1975)(99) Randomised, multicentre; USA	3892	Secondary prevention Male, age 30–64 y, verifi ed evidence of MI >3 m before entry, no recent worsening coronary disease or of other major illnesses 100% men	6.2 у	Clofibrate (1·8 g daily) vs Placebo	ALLOCATION CONC: Adequate RANDO: Adequate DOUBLE BLINDING described : yes FOLLOW-UP: described:yes COMPLETION RATE 92.6/92 (treatment/placebo) ITT described: yes FUNDING:? Jadad: 4
WHO-COOP committee of principal investigators (1978)(100) Randomised, multicentre; Scotland, Hungary, and Czech Republic	10627	Primary prevention Male, age 30–59 y (mean age :46), upper third level of cholesterol from 15 745 healthy men 100% men 0% diabetics	5.3y	Clofibrate (1·6 g daily) vs Olive oil placebo	ALLOCATION CONC: unclear RANDO: unclear DOUBLE BLINDING described : yes FOLLOW-UP: described:yes COMPLETION RATE 67.3/68.1 (treatment/placebo) ITT described: yes FUNDING:? Jadad: 2
Helsinki Heart Study (1987)(101) Randomised, multicentre; Finland	4081	Primary prevention Age 40–55 y (mean age :47), non- HDL cholesterol ≥5·2 mmol/L 100% men 3% diabetics	60·4 m	Gemfibrozil (1·2 g daily) vs Placebo	ALLOCATION CONC: unclear RANDO: adequate DOUBLE BLINDING described : yes FOLLOW-UP described:yes COMPLETION RATE 70.1 (overall)


Hanefeld (1991)(102) Randomised, multicentre; Germany BECAIT (1997)(103) Randomised, multicentre; Sweden	761	Primary prevention Male, age 30–55 y (mean age :46), newly diagnosed diabetes controlled by diet after 6 w of conventional diet 56% men Secondary prevention Male, age ≤45 y at fi rst MI, cholesterol ≥5·2 mmol/L and/or trig ≥1·6 mmol/L with angiographically evaluable coronary plaque after 3 m dietary intervention 100% men	5y 5y	Clofibrate (1.6 g daily) vs Placebo Bezafibrate (600 mg daily) vs Placebo	(treatment/placebo)ITT described: yesFUNDING:?Jadad: 4ALLOCATION CONC:unclearRANDO:unclearDOUBLE BLINDING described : yesFOLLOW-UP described: yesCOMPLETION RATE 88.1/85.9(treatment/placebo)ITT described: noFUNDING:?Jadad: 2ALLOCATION CONC:unclearRANDO:unclearDOUBLE BLINDING described : yesFOLLOW-UP described: yesCOMPLETION RATE :81.0/79.5(treatment/placebo)ITT described: noFULOW-UP described: yesCOMPLETION RATE :81.0/79.5(treatment/placebo)ITT described: noFUNDING:?Jadad=1
					Trial designed to evaluate surrogate endpoints. The trial was not powered to examine clinical endpoints. SS less coronary events with fibrate compared to placebo.
LOCAT (1997)(104) Randomised,	395	Secondary prevention Male, age <70 y (mean age :60),	2.7y	Gemfibrozil (1200 mg daily) vs	ALLOCATION CONC: unclear RANDO:
		CABG within 3–48 m, LVEF >35%,		Placebo	Adequate

multicentre; Germany		BMI <30 kg/m2, SBP <160 mm Hg, DBP <95 mmHg, HDL <1·1 mmol/L, trig <4 mmol/L, LDL <4·5 mmol/L 100% men 0% diabetics			DOUBLE BLINDING described : yes FOLLOW-UP described:yes COMPLETION RATE: 94/94 (treatment/placebo) ITT described: no FUNDING:? Jadad: 2
SENDCAP (1998)(105) Randomised, multicentre; UK	164	Primary prevention Age 35–65 y (mean age: 51), diet or OHG controlled type 2 DM, no history of cardiovascular disease with any of cholesterol ≥5.2 mmol/L, trig ≥1.8 mmol/L, HDL ≤1.1 mmol/L, total-to- HDL cholesterol ratio ≥4.7 71% men 100% diabetics no other lipid-lowering drugs	3–5 у (range)	Bezafibrate (600 mg daily) vs Placebo	ALLOCATION CONC: unclear RANDO: Adequate DOUBLE BLINDING described : yes FOLLOW-UP described: yes COMPLETION RATE 66.7/63.9 (treatment/placebo) ITT described: no FUNDING:? Jadad: 4 Trial designed to evaluate surrogate endpoints. The trial was not powered to examine clinical endpoints. SS less definite CHD event with fibrate compared to placebo.
VA-HIT (1999)(106) Randomised, multicentre; USA	2531	Secondary prevention Age <74 y (mean age: 64), history of CHD, absence of serious coexisting conditions, HDL ≤1·0 mmol/L, LDL ≤3·6mmol/L, trig ≤3.4mmol/L 100% men 25% diabetics	5·1 y (median)	Gemfibrozil (1200 mg daily) vs Placebo	ALLOCATION CONC: Adequate RANDO: Adequate DOUBLE BLINDING described : yes FOLLOW-UP described: yes COMPLETION RATE 97.6 (overall) (treatment/placebo) ITT described: yes FUNDING:? Jadad: 4
BIP (2000)(107)	3090	Secondary prevention	6·2 y	Bezafibrate	ALLOCATION CONC:

Randomised, multicentre; Israel		Age 45–74 y (mean age: 64), MI ≥6 m but <5 y and/or stable angina pectoris confirmed by investigations and lipid profi le of cholesterol 4·7–6·5 mmol/L, LDL ≤4·7 mmol/L (4·1 mmol/L if <50 y), HDL ≤1·2 mmol/L, trig ≤3·4 mmol/L		(400 mg daily) vs Placebo	unclear RANDO: Adequate DOUBLE BLINDING described : yes FOLLOW-UP described: yes COMPLETION RATE 77/74 (treatment/placebo; patients alive at end of study on medication)
		91% men 10% diabetics			ITT described: yes FUNDING:? Jadad: 4
					The primary end point was fatal or nonfatal myocardial infarction or sudden death. (P=0.26). Total and noncardiac mortality rates were
					similar, and adverse events and cancer were equally distributed. NS findings for all clinical endpoints
DAIS (2001)(108) Randomised, multicentre; Canada, Finland, France, and Sweden	418	Primary/secondary prevention Age 40–65 y (mean age: 57), type 2 DM, lipid profile total cholesterol- to-HDL ratio of 4 plus either LDL 3·5–4·5 mmol/L, trig ≤5·2 mmol/L, or triglyceride 1·7–5·2 mmol/L and LDL ≤4·5 mmol/L 73% men 100% diabetics	3.3 у	Fenofibrate (200 mg daily) vs Placebo	ALLOCATION CONC: Adequate RANDO: Adequate DOUBLE BLINDING described : no FOLLOW-UP described: yes COMPLETION RATE :100 (treatment/placebo; 24 patients with imputed data) ITT described: yes FUNDING:? Jadad: 2
					Trial designed to evaluate surrogate endpoints. The trial was not powered to

					examine clinical endpoints. NS findings for all clinical endpoints.
LEADER (2002)(109) Randomised, multicentre; UK	1568	Secondary prevention Men (mean age: 68) with lower extremity arterial disease 100% men 66% diabetics	4·6 y	Bezafibrate (400 mg daily) vs Placebo	ALLOCATION CONC: unclear RANDO: unclear DOUBLE BLINDING described : FOLLOW-UP described: yes COMPLETION RATE 19.2/22.4 (treatment/placebo) ITT described: yes FUNDING:? Jadad:2 coronary heart disease and stroke (Primary endpoint): NS Major coronary events: NS Nonfatal coronary events: SS
FIELD (2005)(110) Randomised, multicentre; Australia, New Zealand, and Finland	9795	Primary/secondary prevention Age 50–75 y (mean age: 62), type 2 DM according to WHO criteria +not on statin therapy 63% men 100% diabetics	5 y	Fenofibrate (200 mg daily) vs Placebo	ALLOCATION CONC: Adequate RANDO: Adequate DOUBLE BLINDING described : yes FOLLOW-UP described: yes COMPLETION RATE 98.5/99.1 (treatment/placebo) ITT described: yes FUNDING:? Jadad: 4 Coronary event (primary endpoint) HR= 0.89, 95% CI 0.75-1.05; p=0.16; NS Non-fatal myocardial infarction HR= 0.76, 0.62-0.94; p=0.010; SS Coronary heart disease mortality HR=1.19, 0.90-1.57; p=0.22 NS

					Total cardiovascular disease events HR=0.89, 0.80-0.99; p=0.035; SS Coronary revascularisation HR=0.79, 0.68- 0.93; p=0.003; SS Total mortality (p=0.18) NS
Emmerich (2009)(111) Randomised, multicentre; Germany	296	Secondary prevention Age 18–78 y (mean age: 59), with type 2 DM and previous history of Retinopathy 31% men 100% diabetics	1у	Etofibrate (1000 mg daily) vs Placebo	ALLOCATION CONC: unclear RANDO: Adequate DOUBLE BLINDING described : yes FOLLOW-UP described: yes COMPLETION RATE 89 overall (treatment/placebo) ITT described: yes FUNDING:? Jadad=1
ACCORD (2010)(112) Randomised	5518	Primary/secondary prevention Type 2 DM with HbA1c ≥7.5%; age 40–79 y if clinical CV disease or age 55–79y (mean age: 62), if subclinical CV disease or ≥2 CV risk factors; and lipid profi le LDL 4.55– 4.65 mmol/L, HDL <1.42 mmol/L (women and black people) or <1.29 mmol/L (others), and trig <8.5 mmol/L not on therapy or <4.5 mmol/L on therapy 69% men	4.7 y primary outcome, 5 y death	Fenofibrate (160 mg daily, adjusted as per renal function later in trial) vs Placebo (both treatment arms received simvastatin)	ALLOCATION CONC: Adequate RANDO: Adequate DOUBLE BLINDING described : yes FOLLOW-UP described: yes COMPLETION RATE 96.8/97.2 (treatment/placebo) ITT described: yes FUNDING:? Jadad: 4 This trial is discussed in detail in the chapter fibrate plus statin versus statin. No statistically significant difference was found between fenofibrate and placebo (in combination with simvastatin) on any endpoint.

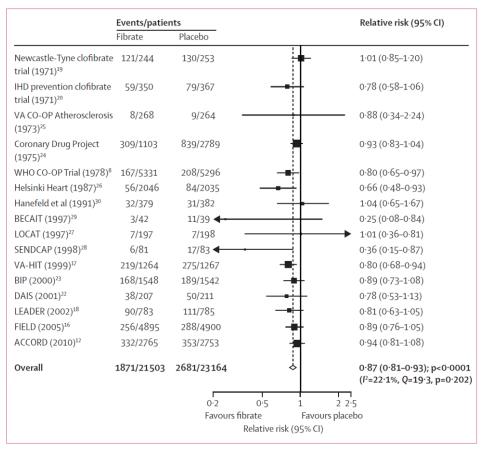


Figure 3: Effect of fibrates on the risk of coronary events

Author's conclusion (Jun 2010):

"Fibrates can reduce the risk of major cardiovascular events predominantly by prevention of coronary events, and might have a role in individuals at high risk of cardiovascular events and in those with combined dyslipidaemia. The findings contrast with the results of some of the individual trials that have reported no benefit. The magnitude of the proportional risk reduction is more modest than that achieved with other vascular preventive therapies targeting lipids, blood pressure, and coagulation, and the clinical relevance of the effect reported here will be debated."

Fibrate versus place	bo						
Bibliography: Meta-analysis Jun 2010(95)							
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)				
All-cause mortality	44813 (16 studies)	RR = 0.87(95% CI 0.93 to 1.08) NS p=0.918	 ⊕ ⊕ ⊖ LOW Study quality:-1 low Jadad in half the trials Consistency: OK Directness:-1 +statin in some trials, clinical heterogeneity Imprecision: OK 				
Cardiovascular death	22066 (6 studies)	RR = 0.97(95% CI 0.88 to 1.07) p=0.587 NS	⊕⊕⊖⊖ LOW Study quality:-1 low Jadad in half the trials Consistency: OK Directness:-1 +statin in some trials, clinical heterogeneity Imprecision:OK				
Major cardiovascular outcomes(including both myocardial infarction and stroke)	19944 (5 studies)	Fibrate: 13.6% Pla: 15.2% RR = 0.90(95% CI 0.82 to 1.00) SS in favor of treatment (fibrate) p =0.048	⊕⊕⊖⊖ LOW Study quality:-1 low Jadad in half the trials Consistency: OK Directness:-1 +statin in some trials, clinical heterogeneity Imprecision:OK				
Coronary events (myocardial infarction and coronary death)	44667 (16 studies)	Fibrate 8.4% Pla: 11.7% RR = 0.87(95% CI 0.81 to 0.93) SS in favor of treatment (fibrate) p <0.0001	 ⊕ ⊕ ⊖ ⊨ LOW Study quality:-1 low Jadad in half the trials Consistency: OK Directness:-1 +statin in some trials, clinical heterogeneity Imprecision:OK 				
Total stroke	27021 (8 studies)	RR = 1.03(95% CI 0.91 to 1.16) p=0.687 NS	 ⊕ ⊕ ⊖ ⊨ LOW Study quality:-1 low Jadad in half the trials Consistency: OK Directness:-1 +statin in some trials, clinical heterogeneity Imprecision:OK 				
Total adverse events	17413 (4 studies)	RR =1.21 (95% CI 0.91 to 1.61) p=0.19 NS	 ⊕ ⊕ ⊖ LOW Study quality:-1 low Jadad in half the trials Consistency: OK Directness:-1 +statin in some trials, clinical heterogeneity Imprecision:OK 				

5.1.2 Summary and conclusions. Fibrate versus placebo

A systematic review and meta-analysis pooled RCTs comparing a fibrate to placebo. Trials with fibrates that are not available in Belgium (clofibrate, gemfibrozil, etofibrate) were also included. Statistical heterogeneity was considered acceptably low for most endpoints. However, clinically, the trials were very diverse: high risk populations (clinical cardiovascular disease or type 2 diabetes) and low risk populations(primary prevention) were pooled together; the quality of included trials was

mixed, with low quality trials also included. No mention was made by the authors whether other lipid-lowering drugs were allowed in the trials.

Compared to placebo, fibrates do not have a statistically significant effect on all-cause mortality or cardiovascular death. *GRADE: LOW quality of evidence*

Compared to placebo, fibrates reduce the risk of major cardiovascular outcomes. However, the result is only borderline significant. GRADE: LOW quality of evidence

Fibrates reduce the risk of coronary events compared to placebo. *GRADE: LOW quality of evidence*

Fibrates have no statistically significant effect on total stroke rate compared to placebo. *GRADE: LOW quality of evidence*

No statistically significant difference in total adverse events is observed. GRADE: LOW quality of evidence

When considering only the trials that examine fibrates versus placebo that are available in Belgium, conclusions are the same (BECAIT 1997(103), SENDCAP 1998(105), BIP 2000(107), LEADER 2002(109), DAIS 2001(108), FIELD 2005(110)):

- No statistically significant difference in mortality rates (all-cause or cardiovascular) is shown in any trial.
- coronary events : significantly less coronary events in 2/3 trials that examined surrogate endpoints as primary outcome.
- Significantly less nonfatal MI in 2/3 trials that examine clinical endpoints. GRADE classification remains LOW.

5.2 Ezetimibe versus placebo

No trials met our inclusion criteria.

5.3 Statin plus fibrate versus statin

5.3.1 Evidence tables. Simvastatin plus fenofibrate versus simvastatin in patients with type 2 diabetes

Study details	n/Population	Comparison	Outcomes	Methodological	
Ginsberg-2010-	n= 5518		Efficacy		RANDO:
1246 (112)		fenofibrate	Major fatal or nonfatal	FF + simva : 291/2765 (2.24%/year)	Adequate
	Mean age: 62	(start 160mg/d	cardiovascular event	Pla + simva: 310/2753 (2.41%/year)	ALLOCATION CONC:
= ACCORD Lipid		and if	(first occurrence of nonfatal	HR: 0.92 (0.79 – 1.08)	Adequate
trial	-Previous CV event:	necessary	myocardial infarction,	NS ; p=0.32	BLINDING :
	36.5%	adjusted	nonfatal stroke, or death		Participants: yes
Design:	-AHT: 140±18mmHg/	according GFR)	from cardiovascular causes)		Personnel: yes
RCT DB	74±11mmHg	+ simvastatin	(PO)		Assessors: unclear
	Total CHOL:	(average dose :	Death from any cause	FF + simva: 203/2765 (1.47 %/year)	
	175±37mg/dl	22,3mg)		Pla + simva: 221/2753 (1.61% /year)	
77 clinical sites	LDL: 100±30mg/dl	Vs		HR: 0.91 (0.75 – 1.10)	FOLLOW-UP: participants
organized into	HDL: 38±8mg/dl	placebo +		NS ; p=0.33	prescribed masked
seven	-Smoking (current):	simvastatin	Death from cardiovascular	FF + simva: 99/2765 (0.72%/year)	medication at most recent
networks in the	14.6%	(average dose :	cause	Pla + simva: 114/2753 (0.83%/year)	visit:
United States	-BMI: 32.3	22,4mg)		HR: 0.86 (0.66 – 1.12)	Fenofibrate: 77.3%
and Canada	 duration of diabetes: 			NS ; p=0.33	Placebo: 81.3%
	median 9y		Major coronary disease	FF + simva: 332/2765 (2.58%/year)	Lost-to follow-up: 1.01%
			event	Pla + simva: 353/2753 (2.79%/year)	Drop-out and Exclusions:
	<u>Inclusion</u>		(fatal coronary event,	HR: 0.92 (0.79 – 1.07)	1.99 %
Duration of	type 2 diabetes, HbA1c ≥		nonfatal myocardial	NS ; p=0.26	 Described: yes
follow-up	7.5%		infarction, or unstable		• Balanced across groups:
(mean):	If clinical CV disease: 40-		angina)		yes
4.7 years	79у		Stroke	FF + simva: 51/2765 (0.38%/year)	1
	; if subclinical			Pla + simva: 48/2753 (0.36% /year)	ITT:Yes
	CVdisease or ≥2 CV risk			HR: 1.05 (0.71 – 1.56)	
	factors: 55 to 79 years.			NS ; p=0.80	SELECTIVE REPORTING: no

LDL cholesterol level	Nonfatal myocardial	FF + simva: 173/2765 (1.32%/year)	
of 60 to 180 mg/dl, HDL	infarction	Pla + simva: 186/2753 (1.44%/year)	Other important
cholesterol < 55 mg/dl		HR: 0.91 (0.74 – 1.12)	methodological remarks :
for women and		NS ; p=0.39	Open-label simvastatin
blacks or below 50 mg	Fatal or nonfatal congestive	FF + simva :120/2765 (0.90% /year)	therapy began at the
per deciliter (1.29 mmol	heart failure	Pla + simva: 143/2753 (1.09% /year)	randomization visit, and the
per liter) for all other		HR: 0.82 (0.65 – 1.05)	masked administration
groups, and a triglyceride		NS ; p=0.10	of either fenofibrate or
level below 750 mg per	Safety	·	placebo began 1 month later.
deciliter (8.5 mmol per	Drug discontinuation due to	FF + simva : 66/2765 (2.4%)	-Because of a rise in serum
liter)	decrease in the estimated	Pla + simva: 30/2753 (1.1%)	creatinine levels in some
if they were not	GFR		patients while receiving
receiving lipid therapy or	Hemodialysis and end-stage	FF + simva : 75/2765	160mg of fenofibrate,
below	renal disease	Pla + simva: 77/2753	starting in 2004, the dose of
400 mg per deciliter (4.5		NS	fenofibrate was adjusted
mmol per liter) if they			according to the eGFR with
were receiving lipid			the use of the abbreviated
therapy.			MDRD equation
			At the last clinic visit,15.9%
Exclusion			in the fenofibrate group and
included the use of a			7.0% in the placebo group
medication known to			were receiving a reduced
interact with statins or			dose
fibrate; history of			- The dose of simvastatin was
pancreatitis,			modified over time in
myositis/myopathy, or			response to changing
gallbladder disease; or			guidelines
refusal to discontinue			
any current lipid-altering			Sponsor:
treatment.			National Heart, Lung, and
			Blood Institute, the National
			Institute of Diabetes and
			Digestive and Kidney

		[Diseases, the National
		1	nstitute on Aging, the
		1	National Eye Institute, the
			Centers for Disease Control
		a	and Prevention, and General
			Clinical Research Centers at
		r	many sites.
		F	Fenofibrate and matching
		Į.	placebo were donated
		ł	by Abbott Laboratories;
		S	simvastatin was donated
		ł	by Merck. The drug
		r	manufacturers had no role in
		t	the design of the study, in
		t	the accrual or analysis of the
			data, or in the preparation of
		t	the manuscript.

In the ACCORD study, all patients were randomly assigned to receive either intensive glycemic control (targeting a glycated hemoglobin level below 6.0%) or standard therapy (targeting a glycated hemoglobin level of 7.0 to 7.9%). A subgroup of patients in the ACCORD study were also enrolled in the ACCORD Lipid trial and underwent randomization, in a 2-by-2 factorial design, to receive simvastatin plus either fenofibrate or placebo

5.3.2	Summary and conclusions: Simvastatin plus fenofibrate versus simvastatin in
	patients with type 2 diabetes

Simvastatin plus fer	Simvastatin plus fenofibrate versus simvastatin plus placebo in patients with type 2 diabetes					
Bibliography: Ginsbe	erg 2010-ACCORD-Lip	bid(112)				
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)			
All-cause mortality	5 518 (1study) mean 4.7y	1.47 %/y vs 1.61% /y HR: 0.91 (95%Cl 0.75 – 1.10) NS	 • O MODERATE Study quality:OK Consistency:NA Directness:-1 protocol change and simvastatin dose lower than current guidelines Imprecision: OK 			
Death from cardiovascular cause	5 518 (1study) mean 4.7y	0.72%/y vs 0.83%/y HR: 0.86 (95%Cl 0.66 – 1.12) NS	 MODERATE Study quality:OK Consistency:NA Directness:-1 protocol change and simvastatin dose lower than current guidelines Imprecision: OK 			
Major fatal or nonfatal CV event (first occurrence of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes) (PO)	5 518 (1study) mean 4.7y	2.24%/y vs 2.41%/y HR: 0.92 (95%Cl 0.79 – 1.08) NS	 • O MODERATE Study quality:OK Consistency:NA Directness:-1 protocol change and simvastatin dose lower than current guidelines Imprecision: OK 			
Major coronary disease event (fatal coronary event, nonfatal myocardial infarction, or unstable angina)	5 518 (1study) mean 4.7y	2.58%/y vs 2.79%/y HR: 0.92 (95%Cl 0.79 – 1.07) NS	 ⊕ ⊕ ⊖ MODERATE Study quality:OK Consistency:NA Directness:-1 protocol change and simvastatin dose lower than current guidelines Imprecision: OK 			
Stroke	5 518 (1study) mean 4.7y	0.38%/y vs 0.36% /y) HR: 1.05 (95%Cl 0.71 – 1.56) NS	 • O MODERATE Study quality:OK Consistency:NA Directness:-1 protocol change and simvastatin dose lower than current guidelines Imprecision: OK 			

In this double blind RCT, simvastatin (average 22.3mg/d) plus fenofibrate 160mg/d was compared to simvastatin plus placebo in patients with type 2 diabetes. 1/3 of the included patients had a previous cardiovascular event. The mean age of the participant was 62y. Participants had type 2 diabetes for a mean duration of 9 years.

Follow-up in the trial was a mean of 4.7 years.

The dose of simvastatin was modified during the trial in response to changing guidelines.

There is no statistically significant difference in all-cause mortality between simvastatin plus fenofibrate and simvastatin-only, nor is there a statistically significant difference in rates of death from cardiovascular cause.

GRADE: MODERATE quality of evidence

The primary endpoint of this trial was a composite of major fatal or nonfatal cardiovascular events (first occurrence of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes). No statistically significant difference between combination therapy and simvastatin monotherapy was found.

GRADE: MODERATE quality of evidence

There is no statistically significant difference in major coronary disease events (fatal coronary event, nonfatal myocardial infarction, or unstable angina) between both treatments. *GRADE: MODERATE quality of evidence*

There is no statistically significant difference in the rate of stroke between both treatments. *GRADE: MODERATE quality of evidence*

Adverse events were not reported in much detail.

5.4 Statin plus ezetimibe versus statin

No trials met our inclusion criteria for efficacy.

5.4.1 Evidence tables. Ezetimibe: all-cause mortality in observational studies

Patel 2013(113)							
Design	N/n	Population	Risk factor	Outcome	Results*		
retrospective cohort study USA (2005-2008)	n= 3827	-Patients with dyslipidemia diagnosis - Mid-America Cardiology Patient Database	Statin + Ezetimibe (n=918) Vs Statin (n=2909)	All-cause mortality	OR: 1.067 (95%CI: 0.713 to 1.598)		
*adjusted for pa	tient characteris	stics.					

selected cardiovascular diseases and risk factors, and medications

Remarks: Authors noted "Though this study indicates a lack of clinical efficacy for ezetimibe, it does face several limitations. Despite the large sample size, the data only comes from one group of cardiologists at one medical center and is retrospective."

5.4.2 Summary and conclusions: Ezetimibe: all-cause mortality in observational studies

A retrospective cohort study by Patel 2013(113) in the USA in 3827 patients from a Cardiology patient database compared the use of a statin + ezetimibe to a statin only. No statistically significant difference in all-cause mortality was observed between the two treatments. (OR: 1.07; 95%CI 0.71 to 1.60).

GRADE: LOW quality of evidence

6 Evidence tables and conclusions: Safety of statins

6.1 Naci 2013 network meta-analysis. Individual statin vs placebo/control and active-comparator.

6.1.1 Evidence tables

Meta-analysis: Comparative Tolerability and Harms of Individual Statins - A Study-Level Network Meta-Analysis of 246 955 Participants From 135 Randomized, Controlled Trials

Inclusion criteria: open-label and double-blind randomized, controlled trials comparing one statin with another at any dose or with control(placebo, diet, or usual care) for adults with, or at risk of developing, cardiovascular disease. We included trials of atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin if they had >50 participants per trial arm and lasted >4 weeks based on prespecified inclusion and exclusion criteria.

We included trials that reported tolerability (number of participants who discontinued the study medication because of adverse events), elevations in hepatic transaminases (number of participants with clinically meaningful elevations in either alanine aminotransferase or aspartate aminotransferase, 3× baseline values as commonly defined by trial investigators), elevations in creatine kinase (CK; number of participants with clinically meaningful increases in baseline CK levels as defined by trial investigators, ranging from 3× to 10× higher than baseline concentrations), myalgia (number of individuals with muscle pain, as defined by trial investigators), myopathy (number of participants with 10× baseline CK levels associated with muscle symptoms), and rhabdomyolysis (number of participants with severe muscle damage, as diagnosed by trial investigators). In addition, we were interested in the incidence of cancer and diabetes mellitus (as defined by trial investigators), so trials reporting these outcomes were also eligible for inclusion. Both fixed dose and titration designs were included. As per our protocol, we excluded trials conducted in patients with renal insufficiency

<u>Search strategy</u>: Search strategy was based on a publicly available protocol previously developed by the study authors to evaluate the comparative clinical benefits of tatins. We searched MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials to identify studies published between January 1, 1985, and March 10, 2013. To identify the relevant literature, we developed a search strategy using the search terms atorvastatin, fluvastatin, imvastatin, lovastatin, pravastatin, rosuvastatin, cholesterol, cardiovascular disease, and hydroxymethylglutaryl-coenzyme A reductase inhibitors/therapeutic use. Our updated search in MEDLINE adopted Cochrane Collaboration's sensitivity and precision- maximizing strategy. We searched for pitavastatin trials post hoc separately because our protocol did not include pitavastatin (protocol finalization coincided with the Food and Drug Administration approval of this agent). We also performed manual searches using the authors' files and reference lists from original communications and review articles to cross-check references. Two researchers (B.T., H.T.) independently performed abstract, title, and full-text screening. A third researcher approved study selection (H.N.).

<u>Assessment of quality of included trials</u>: yes ("We also extracted information on the methodological quality of included studies. In particular, information was collected on blinding, random sequence generation, allocation concealment, indications of incomplete outcome data, indications of selective reporting (possible for trials with published protocols), and industry sponsorship. One researcher extracted data (H.N.) and another independently checked for accuracy (B.T.).") <u>ITT analysis</u>: no

<u>Other methodological remarks</u>: The overall methodological quality of included trials was moderate. Older trials had lower methodological quality with inadequate sequence generation and treatment allocation concealment. A large number of trials did not report details about randomization procedures and allocation concealment. Only 11 trials had high methodological quality on all 6 items.

Discontinuation because of adverse events

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs control	n= 76 462	OR= 0.95 (95%CI 0.83 to 1.08)	n=131 503	Atorvastatin at >20 and ≤40 mg/d
	(placebo or no		NS		OR=2.72 (95% Crl 1.46 to 5,09)
Design: MTM	statin)		/2= 21.9%		SS
					Atorvastatin at >40 mg/d
Search date: march					OR =1.69 (95% Crl 1.18 to 2.44)
2013					SS.
N=135					Other comparisons: NS
n=246 955	Statin vs statin		Simva vs atorva	n=151 823	Atorva vs Simva
			OR=0.61 (95%Cl 0.42 to 0.89)		OR=1.34 (95% Crl 1.06 to 1.69)
Average follow-up 68w			SS		SS
			/2= 71.9%		Atorva vs prava
			Simva vs rosuva		OR= 1.46 (95% Crl 1.10 to 1.92)
			OR=.49 (95%Cl, 0.27 to 0.88)		SS
			SS		
			/2=0.0%		Other comparisons: NS

Myalgia

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs	n= 43 531	OR= 1.07 (95%Cl 0.89 to 1.29)	n=99433?	NS for all comparisons
	control		NS		
Design: MTM			/2=22.1%		
	Statin vs statin		Simva vs atorva	n=84 391	Simva vs atorva
Search date:			OR= 0.56 (95% CI 0.42 to 0.75)		OR= 0.78 (95%Crl 0.55 to 1.13)
march 2013			SS (participants randomized to simvastatin had		NS
			lower odds of experiencing myalgia compared		
N=135			with those receiving atorvastatin)		
n=246 955			/2=0.0%		Other comparisons: also NS
Average follow-up					
68w					

Myopathy

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs	NR	NR	NR	Atorva vs control
	control				OR= 1.21 (95% Crl 0.25 to 4.95)
Design: MTM					NS
					Prava vs control
Search date:					OR= 1.06 (95% Crl 0.18 to 4.81)
march 2013					NS
					Rosuva vs control
N=135					OR= 0.91; (95% CrI 0.12 to 4.43)
n=246 955					NS
					Simva vs control
average follow-up					OR= 1.23 (95% Crl 0.29 to 4.21)
68w					NS
	Statin vs statin	NR	NR	NR	NS
					("There was no evidence of potential differences
					between individual statins in terms of myopathy
					outcomes (results not shown).")

Rhabdomyolysis

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs control	NR	NR	NR	Atorvastatin OR= 1.33 (95% Crl 0.31 to 6.92)
Design: MTM					NS
-					Pravastatin
Search date:					OR= 0.20 (95% Crl, 0.00 to 11.15)
march 2013					NS
					Rosuvastatin
N=135					OR= 0.19 (95% Crl 0.00 to 9.22)
n=246 955					NS
					Simvastatin
average follow-up					OR= 2.03 (95% Crl 0.40 to 14.81)
68w					NS

Statin vs statin	NR	NR	NR	NS
				("There were no statistically detectable differences between individual statins in terms of rhabdomyolysis.")

Transaminase elevations

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs	122665	OR=1.51 (95% CI 1.24 to 1.84)	165534	Atorva
	control		SS		OR= 2.55 (95% Crl 1.71 to 3.74)
Design: MTM			/2= 52.3%		SS
Search date:					Fluva
march 2013					OR= 5.18 (95% Crl 1.89 to 15.55)
					SS
N=135					
n=246 955					Simvastatin at ≤10 mg/d
					OR= 0.41 (95% Crl 0.18 to 0.85)
average follow-up					SS
68w					
					Atorvastatin at >20 and ≤40 mg/d
					OR= 2.42 (95% Crl 1.10 to 5.55)
					SS
					Atorvastatin at >40 mg/d $O_{P} = 5.25 (05\% \text{ cm} - 2.24)$
					OR= 5.25 (95% Crl 3.89 to 7.24)
					SS
					Fluvastatin at >40 mg/d
					OR= 4.16 (95% Crl 1.60 to 14.36)
					SS
					Simvastatin at >40 mg/d
					OR= 2.83 (95% Crl 1.47 to 5.87)

			SS
Statin vs statin	NR	Prava vs atorva OR= 0.27 (95% Cl 0.10 to 0.74) SS /2=61.3%	Prava vs atorva OR= 0.39 (95% Crl 0.24 to 0.65) SS Rosu vs atorva OR= 0.63 (95% Crl 0.42 to 0.94) SS Simva vs atorva OR= 0.45 (95% Crl 0.28 to 0.73) SS Fluva vs prava OR= 5.19 (95% Crl 1.75 to 16.73) SS Fluva vs rosu OR= 3.25 (95% Crl 1.08 to 10.50) SS Fluva vs simva OR= 4.50 (95% Crl 1.49 to 14.19) SS

CK elevations

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs	101324	OR= 1.13 (95% CI 0.85 to 1.51)	127571	Pitava
	control		NS		OR= 3.63 (95% Crl 1.10 to 14.10)
Design: MTM			/2= 20.4%		SS
Search date: march 2013				137980?	Simva > 40mg/d OR= 4.14 (95% Crl 1.08 to 16.24) SS
N=135 n=246 955 average follow-up 68w	Statin vs statin	NR	NR	NR	Individuals randomized to fluvastatin had significantly lower odds of experiencing CK elevations compared with all other statins, except for lovastatin (see table 2 in Naci 2013).

Cancer

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs control	100523	OR, 0.96; 95% CI 0.91–1.02 NS	105450	NS
Design: MTM			/2= 0.0%		
Search date: march 2013	Statin vs statin	NR	NR	NR	NS (see table 3)
N=135					
n=246 955					
average follow-up					
68w					

Diabetes mellitus

Ref	Comparison	N/n direct	Result direct comparison	N/n MTM	Result indirect comparison (MTM)
ref*Naci_2013_44	Statin vs	113698	Statins as a class	NR	NS (the drug-level network meta-analysis did not
	control		OR= 1.09 (95% Cl 1.02 to 1.16)		achieve statistical significance for any of the
Design: MTM			SS		individual statins as a result of wider 95% CrIs
			/2= 2.8%		(rosuvastatin had a similar effect size estimate in
Search date:					both pairwise and network meta-analyses)
march 2013			Rosuva		
			OR= 1.16 (95% CI 1.02 to 1.31)		
N=135			SS		
n=246 955			/2= 0.0%		
	Statin vs statin	NR	NR	NR	NS (there were no statistically detectable
average follow-up					differences between individual statins in terms of
68w					diabetes mellitus incidence)

Remarks:

- There was limited information on both myopathy and rhabdomyolysis outcomes.

6.1.2 Summary and conclusions. Naci 2013 network meta-analysis. Individual statin vs placebo/control and active-comparator.

This network meta-analysis collected all the trials that compare a statin to placebo or no treatment, or to another statin. Trials that were longer than 4 weeks were included. The aim of this analysis was to explore adverse events.

We could not perform a GRADE assessment of these endpoints because of lack of information. The overall methodological quality of included trials was reported by the authors as being moderate.

To fully interpret the results of a mixed-treatment meta-analysis, results from direct comparisons as well as the results from indirect comparisons should be reported. Information on direct comparisons however was missing for a lot of the endpoints.

Statin versus place	00		
Bibliography: Mixed	l treatment meta-ana	alysis: Naci_2013(114)	
Outcomes	N° of participants Follow up	Results	Quality of the evidence (GRADE)
Myalgia	43 531 (direct) 99 433 (indirect) mean 68w	<u>Direct comparison</u> OR= 1.07 (95%Cl 0.89 to 1.29) NS <u>Indirect comparison</u> NS for all comparisons	not applied
Myopathy	NR	<u>Direct comparison</u> Not reported <u>Indirect comparison</u> NS for all comparisons	not applied
Rhabdomyolysis	NR	<u>Direct comparison</u> Not reported <u>Indirect comparison</u> NS for all comparisons	not applied

The network meta-analysis by Naci 2013 compared statins versus placebo for muscle-related outcomes. No statistically significant differences were found for myalgia, myopathy or rhabdomyolysis *GRADE: not applied*

Statin versus statin			
Bibliography: Mixed	treatment meta-ana	alysis: Naci_2013(114)	
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)
Myalgia	84 391 (indirect)	Simva vs atorva <u>Direct comparison</u> OR= 0.56 (95% Cl 0.42 to 0.75) SS in favour of simvastatin <u>Indirect comparison</u> OR= 0.78 (95%Crl 0.55 to 1.13) NS	not applied
Myopathy		Other comparisons: also NS Direct comparison Not reported Indirect comparison NS for all comparisons	not applied
Rhabdomyolysis		<u>Direct comparison</u> Not reported <u>Indirect comparison</u> NS for all comparisons	not applied

The network meta-analysis by Naci 2013 compared statins versus other statins for muscle-related outcomes. Simvastatin was found to have a lower risk of myalgia than atorvastatin in the direct comparison, but not in the indirect comparison. All other comparisons were not statistically significantly different.

No statistically significant differences were found for myopathy and rhabdomyolysis. *GRADE: not applied*

Statin versus placebo					
Bibliography: Mixed	treatment meta-ana	alysis: Naci_2013(114)			
Outcomes	N° of participants Follow up	Results	Quality of the evidence (GRADE)		
Cancer	100 523 (direct) 105 450 (indirect) mean 68w	Direct comparison OR, 0.96; 95% Cl0.91–1.02 NS Indirect comparisons NS for all comparisons	not applied		

The network meta-analysis by Naci 2013 compared statins versus placebo for the outcome cancer. No statistically significant difference was found. *GRADE: not applied*

Statin versus statin					
Bibliography: Mixed	treatment meta-ana	alysis: Naci_2013(114)			
Outcomes	N° of participants Follow up	Results	Quality of the evidence (GRADE)		
Cancer	NR	<u>Direct comparison</u> Not reported <u>Indirect comparisons</u> NS for all comparisons	not applied		

The network meta-analysis by Naci 2013 compared statins versus other statins for the outcome cancer. No statistically significant differences were found between different statins. *GRADE: not applied*

Note:

The network meta-analysis by Naci 2013 comparing statins to placebo and other statins, also examined transaminase elevations and CK elevations. In the direct comparison, statins had a higher risk of transaminase elevations than placebo (**OR=1.51; 95% CI 1.24 to 1.84**). In the direct comparison, there was no statistically significant difference in CK elevations between

In the direct comparison, there was no statistically significant difference in CK elevations between statins and placebo.

Statins versus placebo						
Bibliography: Mixed treatment meta-analysis: Naci_2013(114)						
Outcomes	N° of participants Follow up	Results	Quality of the evidence (GRADE)			
Diabetes mellitus	113 698 (direct) mean 68w	<u>Direct comparison</u> <u>Statins as a class</u> OR= 1.09 (95% Cl 1.02 to 1.16) SS <u>Rosuvastatin</u> OR= 1.16 (95% Cl 1.02 to 1.31) SS	not applied			
		Indirect comparison NS for all comparisons (individual statins)				

The network meta-analysis by Naci 2013 compared statins versus placebo for the outcome diabetes mellitus. People taking statins had a higher risk of developing diabetes. In the direct comparison, this difference was only statistically significant for rosuvastatin. In the indirect comparisons, no statistically significant differences were found. *GRADE: not applied*

Statin versus statin					
Bibliography: Mixed	treatment meta-ana	lysis: Naci_2013(114)			
Outcomes	N° of participants	Results	Quality of the evidence		
	Follow up		(GRADE)		
diabetes mellitus	NR	Direct comparison	not applied		
		Not reported			
		Indirect comparison			
		NS for all comparisons			

The network meta-analysis by Naci 2013 compared statins versus other statins for the endpoint diabetes mellitus. No statistically significant differences were found between different statins. . *GRADE: not applied*

6.2 Intracerebral hemorrhage or hemorrhagic stroke

6.2.1 Evidence tables

Meta-analysis:

Inclusion criteria: randomized trials (regardless of language, publication status, and sample size) that included data on the frequency of intracerebral hemorrhage and statin exposure.

"Most studies defined intracerebral hemorrhage as intraparenchymal brain hemorrhage confirmed by neuroimaging or autopsy. however, we also included studies that defined intracerebral hemorrhage using International Classification of Disease diagnosis codes (which havebeen shown to be accurate for this end point)" Excluded articles that aggregated statins with other lipid-lowering classes (although we contacted authors to inquire whether a separate analysis of statins was available). Excluded studies focused solely on intracranial hemorrhage after intravenous or intra-arterial thrombolysis for acute ischemic stroke.

Observational studies also searched and included but not reported here.

<u>Search strategy</u>: "We used a multistep approach to find studies. First, we searched 17 electronic bibliographic databases from inception until June 1, 2011: Cardiosource Clinical Trials, Cochrane Central Register of Controlled Trials, Cochrane Health Technology Assessment Database, Database of Abstracts of Reviews of Effects, European Medicines Agency Web site, Excerpta Medica, Healthstar, International Standard Randomized Controlled Trial Number Register, Medline, NIH www.ClinicalTrials.gov, OVID Full Text Journals, PreMedline, Stroke Trials Registry, UpToDate Online, US Food and Drug Administration Web site, Web of Science With Conference Proceedings, and What's What Online. We adapted search terms to each database and updated the search during the analysis phase using automated e-mail alerts (Table I in the onlineonly Data Supplement)."

"Second, we used the "find similar" and "find citing articles" functions in bibliographic databases to locate related articles. Third, we manually screened bibliographies of statin product monographs, review articles, eligible primary studies, treatment guidelines, and previous meta-analyses. Fourth, we reviewed abstract proceedings of cardiology, neurology, and endocrinology meetings that had not yet been indexed in bibliographic databases. Finally, we contacted authors of studies that reported rates of statin exposure and intracerebral hemorrhage in their publications but did not report an exposure-outcome association; we successfully obtained these data in >90% of cases."

Assessment of quality of included trials: yes ("We used the Jadad scale to measure methodological quality for randomized trials with points recorded for randomized sequence generation, blinding, and description of withdrawals and dropouts, we also recorded loss to follow-up and requested such data from authors when it was not available.5 We used the Downs and Black6 scale to measure methodological quality for observational studies, again requesting clarification from authors for missing details. The scale includes items on quality of reporting, external validity, internal validity, and statistical power. We also reviewed design articles and secondary reports to supplement our measurement of methodological quality. We converted the Downs-Black and Jadad scales to a common unweighted fraction ranging from 0 to 1.0 for use in meta-regression.")

ITT analysis: yes (no definition given of performed ITT: "For randomized trials, we recorded the number of events and patients at risk in each arm using an intention-to-treat framework and computed risk ratios (RRs) for each study, which were subsequently pooled.")

Other methodological remarks:

- We performed a DerSimonian-Laird random-effects meta-analysis to pool effect estimates across studies. We reported summary effects as RRs with 95% Cls. We assessed heterogeneity using the I2 statistic. Descriptive statistics were expressed as medians with interquartile ranges (IQRs).
- We tested for publication bias by inspecting funnel plots and performing Begg and Mazumdar rank correlation tests for each of the 3 major study designs.
- We prespecified several additional analyses to assess the robustness of our results and to explore potential sources of heterogeneity.

Ref	Comparison	N/n	Outcomes	Result
ref*Hackam	Statin vs	N= 23	Intracerebral hemorrhage	RR= 1.10 (95% CI 0.86 to 1.42)
2011	placebo	n= 526518 patient-years		NS
		(4D 2005, ACAPS 1994,		
Design:		AFCAPS/TexCAPS 1998, ALERT 2003,		
Collaborative		ALLHAT 2002, ASCOT 2003, ASPEN		
Systematic		2006, AURORA 2009, Bone 2007, CARE		
Review and		1996, CLAPT 1999, CORONA 2007,		
Meta-		GISSI-HF 2008, GISSI-P 2000, GREACE		
Analysis		2002, HPS 2002, JUPITER 2008, LIPID		
		1998, MEGA 2006, MIRACL 2001,		
Search date:		PROSPER 1995, SPARCL 2006, SSSS		
06/2011		1994)		
		N= ?(Not specified by Hackam 2011)	Total stroke	RR= 0.85 (95% CI 0.78 to 0.93)
median				SS in favour of statin.
follow-up				
per trial of				l ² =40%
3.9 years		N= ? (Not specified by Hackam 2011)	Ischemic stroke	RR= 0.83 (95% CI 0.75 to 0.92)
				SS in favour of statin.
				l ² =37%

* Characteristics of included studies: see below

Remarks:

Sensitivity analyses "In meta-regression of all 42 studies, we found no association between effect size and study region (P • 0.23), patient prevention status (P • 0.36), history of cerebrovascular disease (P • 0.09), methodological quality (P • 0.27), or study epoch (P • 0.80)."

"Among 11 studies (including SPARCL) exclusively enrolling patients with cerebrovascular disease, we found no evidence that statins selectively increased the risk of intracerebral hemorrhage (RR,1.03; 95% CI, 0.82–1.30; Figure 4)." Note: of these 11 studies, 10 were observational studies.

Ref + design (bv. Dubbel blinde rct)	n	Population	Duration	Comparison	Methodology
4D (DeutscheDiabetes- Dialyse-Studie) 2005(5) RT	1255	Subjects with type 2 diabetes mellitus receiving maintenance hemodialysis	4.0 years	20 mg of atorvastatin per day or matching placebo.	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Adequate FOLLOW-UP:30% discontinued before end of study (6% medical reasons, 10% wish of patient,) ITT:yes note: 4 week run-in placebo FUNDING: Pfizer Jadad Score: 5
ACAPS (Asymptomatic Carotid Artery Progression Study) 1994(33) RT	919	Asymptomatic patients with subclinical atherosclerosis and dyslipidemia	2.8 years	20 mg lovastatin vs placebo	ALLOCATION CONC: unclear RANDO: Adequate BLINDING : Participants/personnel/assessors Carers and patients were blinded FOLLOW-UP: no dropouts reported ITT:yes FUNDING: unclear risk (funded by pharm industry) Run-in: 3- to 4-week run-in period during which they were given lovastatin placebo and open-labeled warfarin (1 mg/dL). "One purpose of the run-in phase was to identify and exclude participants who took <80% of their pills" (randomization after

AFCAPS/TexCAPS (Air Force/Texas Coronary Atherosclerosis Prevention Study) 1998(6) RT	6605	Patients with normal or mildly elevated total and LDL cholesterol, low HDL cholesterol, and no clinically evident atherosclerotic disease	5.2 years	Lovastatin 20/40 mg vs placebo	ALLOCATION CONC: unclear RANDO: unclear BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: no dropouts reported ITT:yes FUNDING: unclear risk (funded by pharm industry) Run-in: Participants who met entrance criteria and completed a 12-week American Heart Association Step I diet run-in, including a 2-week placebo baseline run-in, were randomized. No information on how many people were excluded in this step. <i>Trial was stopped prematurely. To be terminated when 320</i> <i>participants had experienced</i> <i>primary outcome event. Stopped when 267 had done at 5.2</i> <i>years</i>
ALERT (Air Force/Texas Coronary Atherosclerosis Prevention) 2003(7) RT ALLHAT(Antihypertensive	2102	Patients with renal transplants, stable graft function, receiving cyclosporine Patients with	6.7 years (Extended follow-up) 4.8 years	Fluvastatin vs placebo Pravastatin vs placebo	Jadad Score: 4 ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Adequate ITT:yes FUNDING:Novartis we doubled study-medication dose after around 2 years. This rise in dose of fluvastatin from 40 to 80 mg daily was predicted to reduce LDL-cholesterol concentrations by an additional 6%. Jadad Score: 4 ALLOCATION CONC:

and Lipid-Lowering Treatment to Prevent Heart Attack Trial) 2002(8) RT		hypertension and at least 1 other risk factor for coronary heart disease			Adequate RANDO: Adequate BLINDING : no FOLLOW-UP: At the end of the trial, 84.8% of participants were
					known to be alive, 12.3% were confirmed dead, 0.5% were reported dead with confirmation pending, and 2.4% had unknown vital status. ITT:yes FUNDING:
					Methodological remarks: because of the modest cholesterol differential between pravastatin and usual care, ALLHAT-LLT lacked the power to discriminate between the expected reductions in mortality and CHD events and the null hypothesis.
					Jadad Score: 3
ASCOT (Anglo- Scandinavian Cardiac	10305	Hypertensive patients with at least 3 other	3.3 years	Atorvastatin vs placebo	ALLOCATION CONC: unclear
Outcomes Trial) 2003(10)		cardiovascular risk factors		placebo	RANDO:
					Adequate
RT					BLINDING :
					assessors: yes
					FOLLOW-UP: 99%
					ITT:yes
					Note: 4 week run-in
					FUNDING:Pfizer
					Jadad Score:5
ASPEN (Atorvastatin	2410	Mainly primary	4.0 years	10 mg atorvastatin	ALLOCATION CONC:
Study for Prevention of		prevention patients with		Vs	unclear
Coronary Heart Disease		type 2 diabetes mellitus		placebo;	RANDO:
Endpoints in Non-Insulin-					unclear

Dependent Diabetes Mellitus) 2006(11) RT					BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: 22% drop outs reported ITT:yes FUNDING: unclear risk (funded by pharm industry) Jadad Score: 4
AURORA (A Study to Evaluate the Use of Rosuvastatin in Subjects on Regular Hemodialysis: An Assessment of Survival and Cardiovascular Events) 2009(12) RT	2776	Patients receiving maintenance hemodialysis	3.8 years	Rosuvastatin vs placebo	ALLOCATION CONC: unclear RANDO: Adequate BLINDING : Participants/personnel/assessors not described FOLLOW-UP: no patients lost ITT:yes) FUNDING:AstraZeneca Jadad Score: 4
Bone 2007(34) RT	626	Postmenopausal women with mild hypercholesterolemia	1.0 years	Atorvastatin vs placebo	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Unclear;states double blind but only reports that the participants were blinded to intervention FOLLOW-UP: 5% dropped out ITT:yes FUNDING: unclear risk (funded by pharm industry)

					Jadad Score: 5
CARE (Cholesterol and Recurrent Events) 1996(14) RT	4159	Patients with myocardial infarction	5.0 years	Pravastatin vs placebo	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors Adequate FOLLOW-UP: >99% ITT:yes FUNDING:? Jadad Score: 4
CLAPT (Cholesterol Lowering Atherosclerosis PTCA trial) 1999(115) RT	226	Men scheduled to undergo elective coronary angioplasty	2.0 years	Lovastatin vs placebo	Jadad Score: 2
CORONA (Controlled Rosuvastatin in Multinational Trial in Heart Failure) 2007(15) RT	5011	Chronic ischemic heart failure	2.7 years	rosuvastatin vs placebo	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel:Adequate Assessors: unclear FOLLOW-UP: ? ITT:yes note: 2-4 week placebo run-in FUNDING:AstraZeneca Jadad Score: 5
GISSI-HF (Gruppo Italiano per lo Studio della	4574	Chronic heart failure (regardless of cause)	3.9 years	rosuvastatin vs placebo	ALLOCATION CONC: Adequate

Sopravvivenza nell'Infarto Miocardico– Heart Failure) 2008(16) RT GISSI-P (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico–Prevention) 2000(17) RT	4271	Patients with recent acute myocardial infarction	2.0 years	atorvastatin vs placebo	RANDO: Adequate BLINDING : Participants/personnel/assessors FOLLOW-UP: ITT:yes FUNDING: Società Prodotti Antibiotici (SPA; Italy), Pfizer, Sigma Tau, and AstraZeneca. Jadad-score 5 ALLOCATION CONC: inadequate RANDO: ? BLINDING : inadequate FOLLOW-UP: ? ITT:yes/no ('author's definition') FUNDING: Methodological remarks:GISSI-P was started in 1993 and its story was crossed by the publication of the results of similarly designed clinical trials. The publication of 4S results in 1994 prompted the Data Safety and Monitoring Board (DSMB) and the Steering Committee (SC) ; decreased statistical power due to its premature stopping
					Jadad-score 2
GREACE (Greek Atorvastatin and Coronary-Heart-Disease Evaluation) 2002(116)	1600	Patients with established CAD	3.0 years	Atorvastatin vs placebo	Jadad Score:3
RT HPS (Heart Protection	20536	Patients with coronary	5.0 years	simvastatin vs placebo	ALLOCATION CONC:
,		·····	.,		

(5+1)		discoso othor contraint			Adagusta
Study) 2002(18)		disease, other occlusive vascular disease, or			Adequate RANDO:
DT		diabetes mellitus			
RT		diabetes mellitus			Adequate
					BLINDING :
					Participants/personnel/assessors?
					Adequate
					FOLLOW-UP: >99%
					ITT:yes
					FUNDING:?
					There was a change in the protocol so that only patients whose total blood cholesterol was < 250 mg/dl could be randomized whilst patients with total blood cholesterol > 250 mg/dl who had already been enrolled in the study had to be re-evaluated and, if appropriate, pharmacologically treated. The DSMB and the SC agreed to stop randomization prematurely in late 1996 after the publication of CARE results. Primary outcomes were mortality (for overall analyses) and fatal
					or non-fatal vascular events (for subcategory analyses), with subsidiary assessments of cancer and of other major morbidity.
					Jadad Score: 5
JUPITER (Justification for	17802	Asymptomatic patients	1.9 years	rosuvastatin vs	ALLOCATION CONC: Adequate
the Use of Statins		with elevated C-reactive		placebo	RANDO: Adequate
in Prevention: an		protein			BLINDING :
Intervention Trial					Participants/personnel/ assessors
Evaluating Rosuvastatin)					Adequate
2008(19)					FOLLOW-UP: drop outs unclear
					ITT: yes
RT					FUNDING: High risk (funded by pharm industry)
					Other remarks:
					Stopped early with a follow-up of 1.9 years.
					Jadad Score:4
LIPID (Long-Term	9014	Patients with coronary	6.1 years	Pravastatin vs placebo	ALLOCATION CONC:

Intervention With		artery disease			Adequate
Pravastatin in Ischaemic					RANDO:
Disease) 1998(60)					Adequate
					BLINDING :
RT					Participants/personnel/assessors?
					Adequate
					FOLLOW-UP: >99%
					ITT:yes
					FUNDING:?
					Jadad Score:4
MEGA (Primary	7832	Asymptomatic patients	5.3 years	Pravastatin vs placebo	ALLOCATION CONC: Adequate
Prevention		with			RANDO: Adequate
of Cardiovascular Disease		hypercholesterolemia			BLINDING :
With Pravastatin in					Participants/personnel/assessors
Japan) 2006(22)					Inadequate; single blinded endpoint committee was blinded
. , . ,					only because investigators stated that placebo-controlled trials
RT					are regarded with suspicion by Japanese participants
					FOLLOW-UP:
					98 % in efficacy analysis
					ITT:yes
					FUNDING:
					low risk (funded by pharm industry)
					Jadad Score:3
MIRACL (Myocardial	3086	Patients with recent acute	0.3 years	Not specified by	
Ischemia Reduction with		coronary syndrome	-	Hackam 2011	Jadad Score: 4
Acute Cholesterol					
Lowering) 2001(117)					
RT					
PROSPER (Prospective	5804	Elderly patients with	3.2 years	pravastatin vs placebo	ALLOCATION CONC: Adequate
Study		vascular disease or risk			RANDO: Adequate
of Pravastatin in the		factors for vascular			BLINDING : Adequate
Elderly at Risk) 1995(26)		disease			FOLLOW-UP: 25% did not complete trial (due to adverse event,
					death, refusal or lost)
RT					13% refusal or lost to follow-up

	1				
					ITT:yes FUNDING: Bristol- Myers Squibb, USA Jadad Score:5
SPARCL (Stroke Prevention by Aggressive Reduction in Cholesterol Levels) 2006(54) RT	4731	Patients with a history of stroke or TIA	4.9 years	atorvastatin vs placebo	ALLOCATION CONC: Adequate RANDO: Adequate BLINDING : Participants/personnel/assessors? Adequate FOLLOW-UP: ITT:yes FUNDING:?
SSSS (Scandinavian Simvastatin Survival Study) 1994(25) RT	4444	Patients with coronary artery disease	5.4 years	Not speci fied by Hackam 2011	Jadad Score: 4 ALLOCATION CONC: /unclear RANDO: unclear BLINDING : Participants/personnel/assessors unclear FOLLOW-UP: note 2 week placebo run in FUNDING:Merck Jadad Score:5

6.2.2 Summary and conclusions. Intracerebral hemorrhage or hemorrhagic stroke

Statins versus place	Statins versus placebo and intracerebral hemorrhage						
Bibliography: Hacka	m 2011(118)						
Outcomes	N° of participants (studies) Follow up	Results	Quality of the evidence (GRADE)				
Intracerebral hemorrhage	526518 patient- years (23 studies) Median 3.9y	RR= 1.10 (95% CI 0.86 to 1.42) NS	⊕ ⊕ ⊕ O MODERATE Study quality: OK, high jadad Consistency: OK Directness: -1 clinical heterogeneity Imprecision: OK				

This meta-analysis included all RCTs comparing statin to placebo that report the endpoint 'intracerebral hemorrhage'. The populations of the selected RCTs were clinically heterogenous: some trials included patients without clinically apparent cardiovascular disease, whilst other trials included patients with CV disease, or only type-2 diabetic patients. Median duration of trials was 3.7 y and ranged from 4 months to 6.7 years.

In this clinically heterogenous population, no statistically significant difference in intracerebral hemorrhage was found between statin treatment and placebo. *GRADE: MODERATE quality of evidence*

The authors also included observational studies for some calculations. These results are not reported here, but do not alter the conclusion.

When we compare this result to the endpoint 'haemorrhagic stroke' in the meta-analyses from the previous chapters, we find some discrepancy.

Taylor 2013(32) found no statistically significant difference in haemorrhagic stroke between statin treatment and placebo, in patients without a history of cardiovascular disease. Only 2 trials were included.

GRADE: LOW quality of evidence

Manktelow 2009(48) compared statins versus placebo in patients with a history of stroke or TIA. In this population, treatment with statins results in a higher risk of hemorrhagic stroke compared to placebo. Data from 2 RCTs were included. *GRADE: MODERATE quality of evidence*

Note: Hackam 2011(118) found no statistically significant difference between statin and placebo in patients with cerebrovascular disease. This conclusion was based on 10 observational studies + 1 RCT.

6.3 New onset type-2 diabetes

6.3.1 Evidence tables

Design	N/n	Population	Risk factor	Outcome	Results*
SR + MA of RCTs	N= 13	Non-diabetic at baseline	Statin	New diabetes	OR: 1.09
Design: MA	n= 91 140	Stable individuals (no organ transplants,	Vs	(during a	95%CI: 1.02-1.17
		no haemodialysis)	No statin	mean of 4y)	NNH = 255 (for 4y treatment)
Search date:					
(jan-2009)					

Design	N/n	Population	Risk factor	Outcome	Results*
Retro-spective n= - Individuals cohort (Taiwan 42060 naive to syst National Health - Men age ≥4 Insurance years during beneficiaries) received stat 2003 and the were identifi - Mean age: - Female: 41	 Individuals without endocrine disorders and naive to systemic steroid. Men age ≥45 years and women age ≥55 years during 2000 to 2003 who continuously received statins ≥30 days during 2000 to 2003 and those naive to statins before 2004 were identified Mean age: 63 +/- 9 Female: 4199 (50%) for statin group, 16500 (49%) for control group 	Statin (n=8412) vs control (n=33648) Statin (n=8412) vs control (n=33648)	Diabetes Major adverse cardiovascular events (MACE, the composite of myocardial infarction and	2.4% vs 2.1% HR: 1.15 (95% Cl 1.08 to 1.22) p<0.001 SS in favour of control HR: 0.91 (95% Cl 0.84 to 0.99) p=0.031 SS in favour of statins.	
		Excluded: - Follow-up < 30 days - presence of ICD-9 codes of diabetes - exposure to antidiabetic medication	Statin (n=8412) vs control (n=33648)	ischemic stroke) in-hospital mortality	HR: 0.61 (95% CI 0.55 to 0.67) p<0.001 SS in favour of statins.
	- MI - received revascularization before the entry	Statin (n=8412) vs control (n=33648)	Risk for MI	HR: 0.82 (95% 0.68 to 0.98) p=0.028 SS in favour of statins	
			Statin (n=8412) vs control (n=33648)	Ischemic strokes	HR: 0.94 (95% CI 0.86 to 1.03) p=0.176 NS

Design	N/n	Population	Risk factor	Outcome	Results*
Retrospective	n = 1 235 671	-Irish primary care population	- statin	New onset treated	Full cohort:
cohort (national		on any medication	(n= 239 628)	diabetes	RR: 1.20
pharmacy claims		- new statin users were	vs		95%CI: 1.17-1.23
database)		identified (vs non-users)	no statin		
		- study overepresented by	(n= 996 043)		
		females, socio-economically	Atorvastatin vs no statin (total	New onset treated	HR: 1.25 (95% CI 1.21 to 1.28)
		deprived and elderly patients	n=120307)	diabetes	p<0.0001
					SS in favour of statin
			Pravastatin vs no statin (total	New onset treated	HR: 1.02
			n=41899)	diabetes	(95% CI 0.98 to 1.06)
					NS
			Rosuvastatin vs no statin (total	New onset treated	HR: 1.42 (95% CI 1.33 to 1.52)
			n=19888)	diabetes	p<0.0001
					SS in favour of statin
			Simvastatin vs no statin (total	New onset treated	HR 1.14 (95% CI 1.06 to 1.23)
			n=11458)	diabetes	p = 0.0005
					SS in favour of statins
			Fluvastatin vs no statin (total n=	New onset treated	HR: 1.09 (95% CI 0.95 to 1.24)
			3125)	diabetes	NS

Remark: There were statistically significant overall dose and duration effects for all statins, excepting fluvastatin, which only demonstrated a duration effect.

Preiss 2011(122)					
Design	N/n	Population	Risk factor	Outcome	Results*
SR + MA of RCTs	N= 5	Non diabetics:	High dose statin	New diabetes	RR: 1.12
	n= 32 752	3/5 trials (n= 25 853) patients	vs moderate dose statin		95%CI:
Search date:		with stable coronary heart			1.04-1.22
(update april 2011)		disease; 2/5 trials patients			
		following recent ACS			2 additional cases in the
					intensive dose group per
					1000 patient years
					NNH =498 (compared to
					moderate dose statin)

Design	N/n	Population	Risk factor	Outcome	Results*
propensity score-	n=	- patients with myocardial	Moderate-dose statin	New development of	1y: 2.3% vs 2.6%
matched cohort,	17080	Infarction	therapy vs Intensive-	diabetes mellitus after	2y: 5.5% vs 6.1%
Ontario Myocardial		- >65 years old	dose statin therapy	hospital discharge.	3y: 8.1% vs 8.9%
Infarction Database		- Age: 77.79y +/- 7.19			4y: 10.7% vs 11.7%
(OMID)		- Female: 7912 (46.3%)			5y: 13.0% vs 13.6%
		- 17% had prior heart failure			p=0.19
		 mean Charlson comorbidity score: 0.63 +/- 1.04. hospitalized in Ontario, Canada, from 			NS
			Moderate-dose statin	Rate of death or ACS	5y: 46.5% vs 44.8%
			therapy vs Intensive-		p=0.044
		april 1, 2004 to march 31, 2010.	dose statin therapy		SS in favour of intensive dose
		Excluded: - patients with diabetes mellitus - patients who were not prescribed statin medications			statin therapy.
			Moderate-dose statin	Rate of ACS	5y: 23.5% vs 22.2%
			therapy) vs Intensive-		p=0.039
			dose statin therapy		SS in favour of intensive dose
					statin therapy.
			Moderate-dose statin	Death rate	5y: 34.8% vs 34.8%
			therapy vs Intensive-		p=0.89
			dose statin therapy		NS

Design	N/n	Population	Risk factor	Outcome	Results*
Retrospective cohort	n =	- age 66 or older; mean age 73y	Atorvastatin vs	Incident diabetes	HR: 1.22
(population based, Ontario,	471 250	- 54.1% women	pravastatin		95%CI: 1.15-1.29
Drug benefit database)		 no diabetes at baseline new statin users 48.3% receiving statin in primary 			(31 vs 23 events per 1000 person years)
		prevention; 51.7% in secondary	Rosuvastatinvs	Incident diabetes	HR: 1.18
			pravastatin		95%Cl: 1.10-1.26
		prevention			(34 vs 23 events per 1000 person
		started			years)
		treatment with a statin from 1			The risk associated with
		August 1997 to 31 March 2010.			rosuvastatin could depend
					on dose and duration of treatment
			Simvastatin vs	Incident diabetes	HR: 1.10
			pravastatin		95%CI: 1.04-1.17
					(26 vs 23 events per 1000 person
					years)
			Fluvastatin vs	Incident diabetes	HR: 0.95
			pravastatin		95%CI: 0.81-1.11
			moderate dose vs low		HR: 1.22 (95%Cl 1.19 to 1.26)
			dose		
			High dose vs low dose		HR: 1.30 (95%Cl 1.20 to 1.40)
	eptor blocker, (recent acute coronary syndrome, chronic 3 blocker, hormones and analogues.	coronary artery disease, (Charlson score, previo	us use of diuretic (thiazide),

6.3.2 Summary and conclusions. New onset type 2 diabetes.

6.3.2.1 Statin versus placebo

Information from RCTs

Sattar 2010(119) is a systematic review and meta-analysis of RCTs comparing a statin to placebo that examined the outcome of new onset diabetes. There is a higher risk of new diabetes with statins compared to placebo (OR 1.09; 95% CI 1.02-1.17, NNH=225 for 4years of treatment).

In the previous chapters, Taylor 2013(32) found similar results in a population without a history of cardiovascular disease. Naci 2013(114), a network meta-analysis, also found a higher risk of diabetes with statins compared to placebo in the direct comparison.

Information from observational studies

We found 2 retrospective cohort studies (Wang 2012(120) and Zaharan 2012(121)), both from health insurance databases (1 study in Taiwan, 1 study in Ireland). Both find that statin use is associated with a higher risk of new onset diabetes. The Taiwanese cohort study(120) calculated a hazard ratio of 1.15 (95% CI 1.08 to 1.22) for the association of statin and type 2 diabetes.

The Irish cohort study(121) calculated data for the individual statins and found that atorvastatin, simvastatin and rosuvastatin were associated with a higher rate of new onset diabetes. The authors also describe an overall dose and duration effect for all statins, except fluvastatin (which only de only demonstrated a duration effect).

Using observational data in a specific statistical method of emulating the design and analysis of a hypothetical RCT of statins, Danaei 2013(125)also found an increased risk of type 2 diabetes (HR: 1.14; 95%CI 1.10-1.19).

6.3.2.2 High dose statin versus lower dose statin

Information from RCTs

A meta-analysis of RCTs by Preiss 2011(122) compared a high dose statin versus a moderate dose statin for the outcome of new onset diabetes. The population of the included trials all had a history of coronary heart disease.

Patients taking a high dose statin have a higher risk of developing diabetes compared to patients who take a lower dose (RR: 1.12; 95%CI:1.04-1.22). 498 patients have to be treated with a high dose statin compared to a moderate dose to cause 1 extra case of diabetes.

Information from observational studies

A Canadian propensity-score matched cohort study by Ko 2013(123)included 17080 elderly patients with myocardial infarction and compared intensive-dose statin use to moderate-dose statin. There was no statistically significant difference in new onset diabetes up to 5 years between both dosages.

A Canadian retrospective cohort study by Carter 2013(124) compared different statins to pravastatin for the outcome new onset diabetes. It found that atorvastatin, rosuvastatin and simvastatin but not fluvastatin were associated with a higher rate of incident diabetes compared to pravastatin. The risk associated with rosuvastatin could depend on dose and duration of treatment.

Moderate dose statin use (HR: 1.22 (95%CI 1.19 to 1.26) and high dose statin use (HR: 1.30; 95%CI 1.20 to 1.40) was associated with a higher risk of incident diabetes compared to low dose statin use.

6.3.2.3 Conclusion: statin use and the risk of type 2 diabetes

Evidence from both RCTs and observational studies point to an increased risk of diabetes with statin use. There is evidence of a dose-response relationship.

GRADE: MODERATE quality of evidence

6.4 Musculoskelettal problems

6.4.1 Evidence tables

Nichols 2007(126)	lichols 2007(126)							
Design	N/n	Population	Risk factor	Outcome	Results* per 1000 person-years			
Cohort retrospective	n= 32225	-mean age: 59y	Statins	Myalgia	Diabetics			
study	(diabetics=	-community-based	(lovastatin or		18.0 (95%CI: 16.4 to 19.6)			
	10247 and non diabetics=	clinical practice, comparing patients who had newly initiated statin treatment with patients who were not	simvastatin)		Vs			
	21978)		initiators		15.8 (95%CI: 14.3 to 17.4)			
Mean follow-up	matched to an equal		Vs		NS (P=0.055)			
was approximately the	number of health plan	receiving statin treatment.	No statin exposure		Non Diabetics			
same among all groups	members based on age	-Statin initiators were older,			20.0 (95%CI: 18.8 to 21.3)			
(36.3-	group, diabete diagnosis	had higher body mass			Vs			
41.5 months), ranging	and year of health plan	index (BMI) and blood			10.8 (95%CI: 9.9 to 11.8)			
from 1 to 108 months.	r t	pressure, high-risk lipid profiles, more comorbidities, and were more likely to be taking other pharmaceutical agents.			SS (P<0.001)			
				Mild Myositis	Diabetics			
					4.7 (95%Cl: 3.9 to 5.6)			
					Vs			
					1.7 (95%Cl: 1.3 to 2.3)			
					SS (P<0.001)			
					Non Diabetics			
					4.5 (95%Cl: 3.9 to 5.2)			
					Vs			
					0.8 (95%Cl: 0.6 to 1.1)			
					SS (P<0.001)			
				Severe Myositis	Diabetics			
					0.4 (95%Cl: 0.2 to 0.7)			
					Vs			
					0.3 (95%Cl: 0.1 to 0.5)			
					NS (P=0.359)			

		Non Diabetics
		0.8 (95%CI: 0.6 to 1.1)
		Vs
		0.2 (95%Cl: 0.1 to 0.4)
		SS (P<0.001)
	Rhabdomyolysis	Diabetics
		0.1 (95%CI: 0.1 to 0.3)
		Vs
		0.2 (95%Cl: 0.1 to 0.5)
		NS (P=0.425)
		Non Diabetics
		0.2 (95%CI: 0.1 to 0.4)
		Vs
		0.2 (95%CI: 0.1 to 0.4)
		NS (P=0.999)
	Any myopathic	Diabetics
	event	24.2 (95%CI: 22.4 to 26.2)
		Vs
		18.9 (95%CI: 17.3 to 20.7)
		SS (P<0.001)
		Non Diabetics
		26.8 (95%Cl: 25.4 to 28.2)
		Vs
		12.6 (95%Cl: 11.6 to 13.7)
		SS (P<0.001)

Authors defined 4 levels of myopathy. In accordance with the ACC, AHA, and NHLBI clinical advisory and published research, myopathy is defined as any muscle complaint, and myalgia as muscle complaints without CK elevation. The ACC, AHA, and NHLBI define myositis as muscle symptoms with CK elevations. Authors created 2 categories of myositis: mild myositis (CK levels 1 ×-3 × ULN) and severe myositis (CK levels 3 ×-10 × ULN). Rhabdomyolysis was defined as CK levels >10× ULN, consistent with ACC, AHA, and NHLBI definitions.

To identify myalgia, it was assumed that CK tests in the normal range (16-206 U/L) performed during permanent or temporary discontinuation of statin treatment according to dispense records, were triggered by muscle complaints and were therefore defined as myalgia.

Design	N/n	Population	Risk factor	Outcome	Results*
Prospective open cohort	n= 2 004 692	-mean age: 50.5 years	Simvastatin	Myopathy	Women
study using routinely	(225 922 (10.7%) were	-primary care patients -Compared with non-	vs No Statin		HR : 3.03 (95%CI : 2.35 to 3.91)
collected data.	new users of statins)				Men
		users of statins, new users			HR : 6.14 (95%Cl : 5.09 to 7.40)
England and Wales		tended to be older and were more likely to be men and to have comorbidities such as atrial fibrillation, cardiovascular disease, peripheral vascular disease, treated hypertension, diabetes, and chronic kidney disease -They were also more	Atorvastatin	Myopathy	Women
			Vs No Statin	Νιγορατηγ	HR : 2.90 (95%CI : 2.09 to 4.01)
	an su ca pe di: tra di: kiu -T lik re co fu				Men
					-
			Fluvastatin	Myonathy	HR : 6.68 (95%CI : 5.32 to 8.39) Women
				Myopathy	
			Vs No Statin		Insufficient data
					Men
					HR : 4.79 (95%Cl : 2.12 to 10.80)
			Pravastatin	Myopathy	Women
		likely to have	Vs No Statin		HR : 2.64 (95%Cl : 1.29 to 5.39)
		results recorded on			Men
		computer for liver			HR : 4.84 (95%CI : 2.86 to 8.17)
		function tests	Rosuvastatin	Myopathy	Women
		and CK concentrations	Vs No Statin		HR : 5.41 (95%Cl : 2.64 to 11.07)
					Men
					HR : 4.21 (95%CI : 1.87 to 9.48)

* Hazard Ratio adjusted

-in women for age3, age3ln(age), bmi, ethnicity, type 1 diabetes, type 2 diabetes,

treated hypertension, liver, hypothyroidism, corticosteroids

-in men for age3, age3ln(age), bmi, ethnicity, type 2 diabetes, corticosteroids

Moderate or serious myopathic event for our study was defined as a diagnosis of myopathy or rhabdomyolysis or a raised creatine kinase concentration of four or more times the upper limit of normal, as this represents an event where treatment is likely to be discontinued.

Mansi 2013(128)						
Design	N/n	Population	Risk factor	Outcome	Results*	
Retrospective	n= 58977	-mean age : 49y	statin users	All osteoarthritis,	OR: 1.26 (95%Cl 1.19-1.33)	
Cohort Analysis		-%male: 47% -Patients classified into 2 groups: statin users	VS	other arthropathies	SS p<0.0001	
-Data extracted from		(patients with at least 1 dispensed	nonusers	Dorsopathies,	OR: 1.20 (95%Cl 1.12-1.27)	
Military health Care		statin prescription of a 3-month supply in Fiscal Year 2004)		rheumatism,	SS p<0.0001	
system		and nonusers (patients who		chondropathies		
		received a prescription for any medication		Dislocations, sprains,	OR: 1.04	
		(but not a statin)		strains	(95%Cl 0.99-1.10)	
4-year follow-up		and did not receive a statin prescription during the 4 years of			NS p=0.1178	
USA		follow-up)				
		-mean age of the statin users were significantly older than the				
		nonusers, and their Charlson comorbidity score was higher than				
		that of the nonusers.				
*adjusted for age, sex an	d Charlson com	orbidity index	•	•	·	

Although authors adjusted for these factors (age, sex and Charlson comorbidity index), other unknown confounders can contribute to the differences. Oncological diseases and several musculoskeletal diseases occur more frequently in older populations. In addition, other potential confounders, such as smoking, alcohol abuse, obesity and polypharmacy, are not directly represented in the Charlson comorbidity index. The follow-up period in our study (4 years) may not be long enough to demonstrate all oncological and osteoarthritic changes Authors also did not account for the different types of statins used and the likelihood of presence of drug-drug interaction as a contributing factor for the increased incidence of our outcomes

6.4.2 Summary and conclusions: musculoskeletal problems

Information from RCTs

Different meta-analyses of RCTs have reported muscle-related endpoints (see also chapter efficacy).

-The meta-analysis by Taylor 2013(32) in primary prevention found no statistically significant difference between statins and placebo in myalgia or muscle pain, nor in rhabdomyolysis.

-The network meta-analysis by Naci 2013(114) compared statins versus placebo for muscle-related outcomes. No statistically significant differences were found for myalgia, myopathy or rhabdomyolysis.

Information from observational studies

-A retrospective cohort study in the USA by Nichols 2007(126) in 32 225 health plan members compared the initiation of a statin (lovastatin or stimvastatin) to no statin exposure. The mean follow-up was 3 years.

In non-diabetics, statin use was associated with a higher prevalence rate of **myalgia** compared to no use (20.0/1000 person-years ; 95%CI: 18.8 to 21.3) vs 10.8/1000 person-years ; 95%CI: 9.9 to 11.8). Myalgia was defined as a temporary discontinuation of statin treatment in the database records, combined with a normal CK test.

Statin use was associated with an increased prevalence rate of **mild myositis and severe myositis** in non-diabetics, and with increased prevalence rate of mild myositis in diabetics (e.g. for non-diabetics: mild myositis 4.5/1000 person-years ; 95%CI: 3.9 to 5.2 with statin use vs 0.8/1000 person-years ; 95%CI: 0.6 to 1.1 without statin and severe myositis 0.8/1000 person-years ; 95%CI: 0.6 to 1.1 vs 0.2/1000 person-years ; 95%CI: 0.1 to 0.4).

No statistically significant association between statin use and **rhabdomyolysis** was found. Statin use was associated with a higher prevalence of **any myopathic event** (all previous endpoints combined), in both diabetics and non-diabetics (Diabetics 24.2/1000 person-years; 95%CI: 22.4 to 26.2 with statin use vs 18.9/1000 person-years 95%CI: 17.3 to 20.7 without statin use. Non-diabetics 26.8/1000 person-years ; 95%CI: 25.4 to 28.2 with statin use vs 12.6/1000 person-years without statin use ; 95%CI: 11.6 to 13.7).

-In a UK prospective open cohort study by Hippisley-Cox 2010(127), the association between individual statins and myopathy (moderate or serious) was examined. 2 004 692, of which 225 922 new statin users were follow for a maximum of 6 years.

Moderate or serious myopathic event was defined as a diagnosis of myopathy or rhabdomyolysis or a raised creatine kinase concentration of four or more times the upper limit of normal.

The use of each individual statin was associated with increased risk of myopathy in both men and women. (example: simvastatin use in men vs no statin use: HR : 6.14; 95%CI : 5.09 to 7.40).

-A retrospective cohort analysis in the USA in 58 977 patients by Mansi 2013(128) studied the association between statin use and musculoskeletal outcomes. Follow-up was 4 years.

They found statin use to be associated with a diagnosis of osteoarthritis and other arthropathies (**OR**: **1.26**; **95%CI 1.19-1.33**). Statin use was also associated with a diagnosis of dorsopathies, rheumatism and chondropathies (**OR**: **1.20**; **95%CI 1.12-1.27**). No association was found with dislocations, sprains and strains.

Conclusion

Statin use is associated with myopathy (myalgia, myositis). This association is not found in RCTs, which may be explained by the exclusion of patients with risk factors for myopathy, inadequate reporting and other methodological problems.

The association is found in observational studies. However, in the studies reported here, the outcomes are retrieved from medical records. If patients do not visit their doctor with minor symptoms, or if coding and retrieving the information is difficult, a bias in the results will be introduced.

For rhabdomyolysis, no statistically significant association was found in these observational studies, possibly due to sample size.

GRADE: LOW quality of evidence

6.5 Cognition

6.5.1 Evidence tables

Richardson 2013 (rct	Richardson 2013 (rct + cohort)							
Design	N/n	Population	Risk factor	Outcome	Results*			
Design: SR	RCT	CHD prevention	Statin vs placebo	Dementia	RR: 1.00 (95% CI 0.61 to 1.64)			
	N= 1	(primary or			NS			
Search date:	n= 20536	secondary)						
Till October 2012	(HPS 2002)	,,						
	MA of cohort studies	Mainly community	Statin vs placebo	Dementia	RR: 0.87 (95% CI 0.82 to 0.92)			
	N=10	based		Dementia	SS in favour of statin			
	n=4360137	Daseu						
	(Rea 2005, Zandi 2005, Szwast							
	2007, Wolozin 2007, Smeeth							
	2009, Hippisley – Cox and							
	Coupland 2010, Beydoun 2011,							
	Parikh 2011, Ancelin 2012,							
	Bettermann 2012)							
	Weaknesses in cohort studies arose							
	from poor representativeness of							
	the cohorts (11 of 26), inadequate							
	follow-up (11 of 26), and limited							
	comparability (8 of 26), most often due to failure to control for level of							
	education.							
	euucation.							

Cohort at lowest risk of bias	Community (USA)	Statin vs placebo	Dementia	RR: 0.41 (95% CI 0.18 to 0.92)
N= 1				SS in favour of statin
n=1560				
(Beydoun 2011)				
Pooled analysis of cohort	Mainly community	Statin vs placebo	Alzheimers	RR: 0.79 (95% CI 0.63 to 0.99)
studies	based		disease	SS in favour of statin
N=10				
n=759553				
(Rea 2005, Zandi 2005,				
Arvanitakis 2008, Smeeth 2009,				
Sparks 2008, Haag 2009, Li				
2010, Beydoun 2011, Ancelin				
2012, Bettermann 2012)				
Pooled analysis of cohort	Mainly community	Statin vs placebo	Alzheimers	RR: 0.57 (95% CI 0.42 to 0.77)
studies at the lowest risk of bias	based		disease	SS in favour of statin
N=3				
n=11584				
(Beydoun 2011, Li 2010, Haag				
2009)				
RCT	CHD prevention	Statin vs placebo	Mild cognitive	RR: 0.98 (95% CI 0.93 to 1.03)
N=1	(primary or		impairment	NS
n=20536	secondary)			
Meta-analysis of cohort studies	Mainly community	Statin vs placebo	Mild cognitive	RR: 0.66 (95% CI 0.51 to 0.86)
N=4	based		impairment or	SS in favour of statin
n=4019			cognitive	
(Yaffe 2002, Cramer 2008,			-	
Sparks 2008, Beydoun 2011)			impairment	
			without	
			dementia	

Cohort with lowest risk of bias	Not reported in	Statins vs placebo	Mild cognitive	RR=0.71 (95% CI 0.33 to 1.52)
N=1	Richardson: , Study		impairment	NS
n= 1308	design, patient		or cognitive	
(Beydoun 2011)	characteristics, and		impairment	
	reported outcomes		without	
	are provided for		dementia	
	cohort studies in		uementia	
	Tables 8, 9, and 12 of			
	Supplement 2.			

*adjusted as follows: Rea 2005: age, sex, education, baseline modified Mini-Mental State

Examination, cardiovascular disease, cerebrovascular disease, alcohol use; **Zandi 2005**: age, sex, education, number of ApoE4 alleles, hypertension, diabetes mellitus; **Szwast 2007**: age, sex, education, ApoE4; **Wolozin 2007**: age, cardiovascular disease, hypertension, diabetes mellitus, Charlson Index (a measure of chronic disease); **Smeeth 2008**: age, sex, likelihood of statin use, date of statin initiation, new diagnoses or drug therapies; **Hippisley-Cox and Coupland 2010**: age, cardiovascular disease, cerebrovascular disease, diabetes mellitus, depression, use of tricyclic antidepressants or selective serotonin reuptake inhibitors, body mass index; **Beydoun 2011**: age, sex, race, education, cardiovascular disease, cerebrovascular

disease, hypertension, diabetes mellitus, atrial fibrillation, dyslipidemia, body mass index, blood pressure, smoking status; **Parikh 2011**: medical comorbid conditions defined by the Centers for Medicare & Medicaid Services Hierarchical Condition Categories risk-adjustment model; **Ancelin 2012**: age, location, education; **Bettermann 2012**: age, sex, race, education, ApoE4, cardiovascular disease, cerebrovascular disease, baseline mild cognitive impairment, treatment group, location; **Sparks 2008**: age, sex, education, ApoE4; **Haag 2009**: age, sex, education, ApoE4, cardiovascular disease, cerebrovascular disease, cerebrovascular disease, cerebrovascular disease, cerebrovascular disease, cerebrovascular disease, diabetes mellitus, other lipid-lowering agents, smoking status, blood pressure, body mass index, total cholesterol; **Li 2010**: age, cohort, sex, race, education, ApoE4, baseline Cognitive Abilities Screening Instrument, cardiovascular disease, cerebrovascular disease, hypertension, diabetes mellitus, other lipid-lowering agents, smoking status, body mass index; **Yaffe 2002**: age, education, treatment group, coronary artery bypass grafting, total cholesterol, smoking status; **Cramer 2008**: education, ApoE4, cerebrovascular disease, diabetes mellitus, smoking status. No confounders reported for Arvanitakis 2008.

- For most RCTs, insufficient information was available to judge risk of bias resulting from sequence generation (10 of 19), allocation concealment (10 of 19), or selective outcome reporting (15 of 19).

6.5.2 Summary and conclusions: cognition

A systematic review by Richardson 2013(129) searched all RCTs and observational studies on statins and cognitive function (dementia, Alzheimer disease and cognitive impairment).

They found 1 RCT (HPS 2002) that compared statins to placebo and reporting on the outcome **dementia**. No significant difference was found between statin and placebo (1.00; 95% CI 0.61 to 1.64).

10 observational studies found that statins were associated with a decreased risk for dementia (RR: 0.87; 95% CI 0.82 to 0.92).

GRADE: MODERATE quality of evidence

For **Alzheimer disease**, a pooled analysis of 10 cohort studies found that statins were associated with a decreased risk (RR: 0.57; 95% CI 0.42 to 0.77). *GRADE: LOW quality of evidence*

1 RCT (HPS 2002) that reported on **mild cognitive impairment** was found. No significant difference in the incidence of mild cognitive impairment was observed between statin treatment and placebo (RR: 0.98; 95% CI 0.93 to 1.03).

A meta-analysis of 4 cohort studies showed that statin therapy was associated with a decreased risk for mild cognitive impairment or cognitive impairment without dementia. (RR: 0.66; 95% CI 0.51 to 0.86)

GRADE: MODERATE quality of evidence

This systematic review also discussed evidence from RCTs and observational studies on **cognitive performance**. No worsening of cognitive performance was found with statins compared to placebo. This was the case in patients with cognitive impairment as well as in patients with normal cognition at baseline.

GRADE: MODERATE to LOW quality of evidence

After the search date of this systematic review, another observational study was published (Steenland 2013(130)). This longitudinal follow-up of >5000 research volunteers tested cognitive performance in statin users versus non users. Statin use was associated with slower worsening of cognitive tests.

6.6 Cataract

6.6.1 Evidence tables

Design	N/n	Population	Risk factor	Outcome	Results*
Prospective open cohort	n= 2 004 692	-mean age: 50.5 years	Simvastatin	Cataract	Women
study using routinely	(225 922 (10.7%)	-primary care patients	vs No Statin		HR : 1.30 (95%Cl : 1.25 to 1.36)
collected data.	were new users of	-Compared with non-users of			Men
	statins)	statins, new users			HR : 1.31 (95%CI : 1.25 to 1.38)
England and Wales		tended to be older and were more likely to be men	Atorvastatin	Cataract	Women
		and to have comorbidities such as	Vs No Statin		HR : 1.30 (95%Cl : 1.22 to 1.37)
		atrial fibrillation, cardiovascular			Men
		disease, peripheral vascular			HR : 1.32 (95%CI : 1.24 to 1.41)
		disease, treated hypertension, diabetes,	Fluvastatin	Cataract	Women
		and chronic kidney disease -They were also more likely to	Vs No Statin		HR : 1.26 (95%CI : 1.05 to 1.52)
					Men
		have			HR : 1.16 (95%CI : 0.95 to 1.42)
		results recorded on computer for	Pravastatin	Cataract	Women
		liver function tests and CK concentrations	Vs No Statin		HR : 1.40 (95%Cl : 1.24 to 1.57)
					Men
					HR : 1.31 (95%Cl : 1.15 to 1.50)
			Rosuvastatin	Cataract	Women
			Vs No Statin		HR : 1.25 (95%Cl : 1.04 to 1.51)
					Men
					HR : 1.56 (95%CI : 1.28 to 1.90)

* Hazard Ratio adjusted

-in women for age3, age3ln(age), ln(bmi), bmi0.5, ethnicity, smoking, cardiovascular disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, atrial fibrillation, corticosteroids;

-in men for age3, age3ln(age), bmi-2, bmi-1, Townsend score, ethnicity, smoking, cardiovascular disease, type 1 diabetes, type 2 diabetes, atrial fibrillation, corticosteroids

Design	N/n	Population	Risk factor	Outcome	Results
Cohort retrospective study (propensity score- matched cohort) USA using retrospective data from October 1, 2003, to March 1, 2010.	n= 46249	 -aged 30 to 85 years old (mean age 57y) - enrolled in Tricare Prime or Plus in the San AntonioMulti-Market Area, and - had at least 1 outpatient visit during the baseline period and 1 outpatient visit during the follow-up period. -statin users were patients who received and filled a statin medication prescription for at least 90 days -Nonusers were patients who did not receive a statin at any time throughout the study 	Statins users (n=6972) Vs Nonusers (n=6972) After propensity score matching Statins users (n=6113) Vs Nonusers (n=27400) Among Patients With No Charlson Comorbidities	All cataract	OR: 1.09 (95%Cl 1.02-1.17) SS p=0.01 In favor of nonusers *OR: 1.25 (95%Cl 1.14-1.38) SS p<0.001 In favor of nonusers **OR: 1.20 (95%Cl 1.06-1.35) SS p=0.003 In favor of nonusers
outpatient visits during ba	seline, and use of	bhol use, illicit drug use, glaucoma at base different classes of medications (Beta Blo mean low-density lipoprotein cholesterol	ocker, Diuretic, Calcium char		admissions during baseline, number of

Klein 2006(132)										
Design	N/n	Population	Risk factor	Outcome	Results*					
observational longitudinal population- based study	n= 1299	-95% non- Hispanic white people -mean age: 63.2y	Statin use vs no statin use	Five-year Incidence of nuclear cataract	OR: 0.60 (95%Cl 0.39-0.93) SS in favor of statin use					
USA *adjusted for age, sex, tota	 cholesterol_high-density	/ lipoprotein cholesterol, smokir	and diabetes							

Remarks: Small sample size

Tan 2007(133)									
Design	N/n	Population	Risk factor	Outcome	Results*				
cohort study	n= 3654	-elderly Australian	Statin use vs no statin use	Any cataract	MultivariateHR:				
(1992-2004)		population			0.52(95%CI 0.29-0.93)				
		-mean age: 64y			P=0.028				
					SS in favor of statin use				

Remarks:

Because participants without gradable photographs for all cataract types were excluded, the analyses of any cataract were based on a reduced number of participants and should be interpreted cautiously.

6.6.2 Summary and conclusions: cataract

There is conflicting evidence concerning statin use and the risk of cataract.

A meta-analysis by Kostis 2013(134) combined observational studies and RCTs that report on statin use and the risk of cataract (only abstract available). It found that statin use is associated with a decreased risk of cataract (OR 0.81; 95%CI 0.71-0.93).

Our own literature search yielded the following studies:

In a UK prospective open cohort study by Hippisley-Cox 2010(127), the association between individual statins and cataract was examined. 2 004 692 patients, of which 225 922 new statin users were follow for a maximum of 6 years.

The use of each individual statin was associated with increased risk of cataract in both men and women. (example: simvastatin use in men vs no statin use: HR 1.30; 95%CI 1.25-1.36). (*This study was not included in Kostis 2013*)

A retrospective cohort study by Leuschen 2013(131) in the USA compared statin us to no statin use for the outcome cataract. In a propensity-score matched cohort of 6 972 pairs of users and nonusers, followed for 7 years, statin use was associated with a higher risk of cataract (OR: 1.09; 95%CI 1.02-1.17).

(This study was not included in Kostis 2013)

In a prospective cohort by Klein 2006(132) of 1 299 patients in the USA, with a maximum follow-up of 7 years, Statin use was associated with a decreased risk of nuclear cataract (OR: 0.60; 95%CI 0.39-0.93).

(This study was included in Kostis 2013)

In an Australian population-based cohort study of 3 654 participants by Tan 2007(133), statin use was associated with a decreased risk of cataract (HR: 0.52; 95%CI 0.29-0.93). (This study was included in Kostis 2013)

Conclusion

The evidence concerning statin use and cataract is conflicting. GRADE: VERY LOW quality of evidence

6.7 Cancer

6.7.1 Evidence tables: site-specific cancer

6.7.1.1 Evicence tables: Bladder cancer

Zhang 2013(135) Design	N/n	Population	Risk factor	Outcome	Results*
Design: SR +MA Search date: (January 1966 – October 2012)	Subtotal RCT N= 3 n= 25977 (Clearfield 2001, Strandberg 2004, HPS 2005)	Adult study participants (18 years or older) Bladder cancer incidence reported	Statin vs control (placebo or no statins)	Bladder cancer	RR: 0.83 (95% CI 0.63 to 1.10) NS
	Subtotal Cohort studies N=5 (Sato 2006, Farwell 2008, Friedman 2008, Haukka 2010, Jacobs 2011)	Adult study participants (18 years or older) Bladder cancer incidence reported	Statin vs control (placebo or no statins)	Bladder cancer	RR: 1.11 (95% CI 0.91 to 1.35) NS
	Overall N=13 (Clearfield 2001, Strandberg 2004, HPS 2005, Sato 2006, Farwell 2008, Friedman 2008, Haukka 2010, Jacobs 2011, Graaf 2004, Kaye 2004, Coogan 2007, Vinogradova 2011, Kuo 2012)	Adult study participants (18 years or older) Bladder cancer incidence reported	Statin vs control (placebo or no statins)	Bladder cancer	Rr: 1.07 (95% CI 0.95 to 1.21) NS
*Adjusted for cor - Cohort st Sato 2006: Age, s	udies:	L	1	1	1

Farwell 2008: Age, diabetes mellitus, elevated cholesterol, cardiovascular disease, hypertension, alcohol use, smoking, weight, thyroid disease, renal failure, chest pain, mental illness, lung disease, gastro-intestinal disease.

Friedman 2008: state of residence

Haukka 2010: age, follow-up period

Jacobs 2011: age, sex, diabetes mellitus, BMI, NSAID use, education, elevated cholesterol, hypertension, heart disease, smoking, frequency of physician visits.

- Case-control studies:

Graaf 2004: age, diabetes mellitus, NSAID use, comorbidity score, use of diuretics, use of calcium channel blockers, use of angiotensin-converting enzyme inhibitors, use of other lipid-lowering drugs, use of hormones, prior hospitalization.

Kaye 2004: age, BMI, smoking

Coogan 2007: age, race, BMI, education, religion, alcohol use, use of hormones

Vinogradova 2011: age, BMI, NSAID use, cardiovascular disease, hypertension, arthritis, smoking, use of Cox2-inhibitors, aspirin use.

Kuo 2012: diabetes mellitus, NSAID use, hypertension, use of other lipid-lowering drugs, prior hospitalization.

Remarks:

- Inclusion criteria were as follows: an original study comparing statin treatment with an inactive control (placebo or no statins), adult study participants (18 years or older), bladder cancer incidence reported, and follow-up over 1 year.
- Studies reporting different measures of RR like risk ratio, rate ratio, hazard ratio (HR), and odds ratio (OR) were included in the meta-analysis. In practice, these measures of effect yield a similar estimate of RR, since the absolute risk of bladder cancer is low.

Quality assessment results

Figure 2 illustrates our opinion about each item of bias risk for included RCTs, and most of the items were at "low risk" based on Cochrane handbook, suggesting a reasonable good quality of RCTs. Table 2 summarizes the quality scores of cohort studies and case–control studies. The Newcastle–Ottawa Scale scores for the included studies ranged from 5 to 8, with a median 6, and 7 studies (70 %) were deemed to be of a high quality (≥6). The median scores for the three categories were 3 for selection, 1.5 for comparability, and 2 for ascertainment of exposure/outcome. Lower quality scores tended to arise from the method of ascertainment of exposure/outcome.

Case-control stud	lies Select	ion	Comparability	Exposure	Total score
Graaf [16]	ជជជ		# #	☆☆	7
Kaye [17]	ជជជ	±,	ដ ង	ជ់ជ	8
Coogan [20]	☆☆		ជជ	☆	5
Vinogradova [26]	ង់ដង់		☆	ជជ	6
Kuo [24]	ជ់ជំជំ		ជជ	ជ់ជ	7
Cohort studies	Selection	C	omparability	Outcome	Total score
Sato [27]	\$	Å		ជ់ជំជំ	5
Farwell [21]	효효	4		ਸ਼ੇਸ਼ੇ	5
Detectory (2.5)	****	1		A	6
Friedman [25]					
Haukka [22]	ដដដដ	4		ជជ	7

Table 2 Methodological quality of included cohort studies and casecontrol studies based on the Newcastle-Ottawa Scale

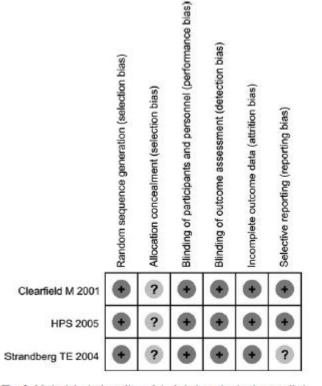


Fig. 2 Methodological quality of included randomized controlled trials: review authors' opinion on each item of bias risk based on Cochrane handbook. "+", "-," or "?" reflected low risk of bias, high risk of bias, and uncertain of bias, respectively

6.7.1.2	Evicence tables: Breast cancer
---------	--------------------------------

Undela 2012(136)					
Design	N/n	Population	Risk factor	Outcome	Results*
Design: MA of	All studies (case-control +	Female subjects,	Statin use vs no statin	Breast cancer	RR:0.99 (95%CI 0.94 to 1.04)
observational studies	cohort)	14 studies population	use		NS
	N= 24 (of which 3 were	based, 10 studies			
Search date:	excluded due to their	hospital-based			
(from January 1966 up to	large CIs and no effect on				
January 2012)	the final combined				
	estimated RR /)				
Follow-Up: 2-15 years	n=2440988 (Cohort:				
	n=2042439/Case-control:				
	n=398549)				
	N= 10(case-control +		Long-term statin use	Breast cancer	RR: 1.03 (95% CI 0.96 to 1.11)
	cohort)				NS
*All studies were control	led for potential confound	ing factors (at least for ag	ge) by matching or adjustme	ents.	
n≥8 confounders: N=8					
n≤7 confounders: N=16					

Comments:

- We included all articles irrespective of publication length; that is we did not exclude articles published as short reports or conference abstracts, even though the critical appraisal of such publications is limited
- Studies reporting different measures of RR like risk ratio, rate ratio, hazard ratio (HR), and odds ratio (OR) were included in the meta-analysis. In practice, these measures of effect yield a similar estimate of RR, since the absolute risk of breast cancer is low.
- Data extraction and quality assessment: Two investigators (K.U. and V.S.) independently reviewed the primary studies to assess the appropriateness for inclusion in the present meta-analysis and data were extracted. The following information was assayed from each study: (i) first author's last name, year of publication, and country of the population studied; (ii) study design; (iii) number of female subjects and number of breast cancer cases; (iv) RR estimates and 95 % CIs; (v) definition of statin exposure and breast cancer assessment; (vi) control for potential confounding factors by matching or adjustments, if applicable. We extracted the RR estimates that reflected the greatest degree of control for potential confounding factors.

Table 1 Studies included in the meta-analysis

Author, year ^a (country) ^b	Study period	All female	BC cases	Description	Study quality	
	(years)	subjects		of exposure/ reference ^e	Definition of statin use	Number of variables adjusted ^f
Lovastatin study groups, 1993 (US, Canada & Finland) [12] ^c	NR	241	3	а	Self-reported	1
Blais et al. 2000 (Canada) [10] ^d	6 (1988–1994)	715	NR	b	NR	1, 9, 10, 13, 22
Beck et al. 2003 (Canada) [13] ^c	8 (1989-1997)	67,472	879	e	Database	1
Cauley et al. 2003 (US) [11] ^c	15 (1986-2001)	7,528	240	d	Medical records	1-4
Graaf et al. 2004 (Netherlands) [14] ^d	3 (1995–1998)	9,182	NR	с	NR	1-3,6-9,11-13
Kaye and Jick 2004 (UK) [15] ^d	12 (1990-2002)	8,091	236	d	Medical records	1, 14, 15
Boudreau et al. 2004 (US) [17] ^d	2 (1997–1999)	1,982	231	g	Medical records	1, 5
Friis et al. 2005 (Denmark) [16]°	13 (1989-2002)	171,937	3,141	e	Database	1, 5, 28, 29
Eliassen et al. 2005 (US) [19] ^c	12 (1988-2000)	75,828	1,624	d	Self-reported	1, 3, 14, 17, 21, 23-25
Kochhar et al. 2005 (US) [20] ^d	6 (1998-2004)	40,421	4,771	d	Database	1, 11, 15, 21
Cauley et al. 2006 (US) [21] ^c	11 (1993-2004)	156,351	4,383	d	Medical records	1, 2, 14, 15, 17, 21, 24, 26-28
Dumasia et al 2006 (US) [22] ^d	10 (1995-2005)	1,042	NR	d	Self-reported	NR
Boudreau et al. 2007 (US) [24] ^c	14 (1990-2004)	92,888	2,707	g	Database	1, 3, 9, 11, 14
Setoguchi et al. 2007 (US) [29] ^c	9 (1994-2003)	19991	227	d	Medical records	1-3, 11, 20, 17, 29, 30
Coogan et al. 2007 (US) [25] ^d	14 (1991-2005)	2,355	69	с	Self-reported	1, 3, 14, 18-21
Friedman et al. 2008 (US) [30] ^c	9 (1994-2003)	NR	1,706	e	Medical records	35
Smeeth et al. 2008 (UK) [26] ^c	11 (1995-2006)	364,854	3,204	d	Medical records	1-11, 22, 31, 32, 37-40
Pocobelli et al. 2008 (US) [31] ^d	6 (1995-2001)	8,620	607	g	Self-reported	1, 3, 14, 17, 18, 25, 27, 31, 35
Eaton et al. 2009 (US) [27] ^d	3 (2005-2008)	189	NR	d	Self-reported	1
Haukka et al. 2010 (Finland) [32] ^c	9 (1996-2005)	6,046	583	d	Database	1, 33
Hippisley et al. 2010 (England & Wales) [28] ^c	6 (2002–2008)	1,014,197	9,823	d	Medical records	NR
Woditschka et al. 2010 (US) [33] ^d	10 (1997-2007)	247,348	NR	d	Medical records	3, 36
Jacobs et al. 2011 (US) [23] ^c	10 (1997-2007)	65,106	2,489	f	Self-reported	1-3, 13-15, 20, 24, 27, 34
Vinogradova et al. 2011 (UK) [34] ^d	10 (1998-2008)	78,604	7,708	e	Medical records	1, 2, 14, 15, 30, 37-40

NR not reported, BC breast cancer

^a Publication year, ^b country of study conducted, ^c cohort studies, ^d case-control studies

^e a, systematic use of lovastatin versus SEER data; b, any use of statins versus use of bile acid-binding resins; c, regular use of statins versus no use of statins; d, current use of statins versus no current use of statins; e, any use of statins versus no use of statins; f, current use of cholesterol-lowering drugs versus never use of cholesterol-lowering drugs; g, ever use of statins versus no use of statins

^f 1 age, 2 use of nonsteroidal anti-inflammatory drugs, 3 use of hormones, 4 use of cardiovascular drugs, 5 use of antihypertensive drugs, 6 use of diuretics, 7 use of angiotensin-converting enzyme inhibitors, 8 use of calcium channel blockers, 9 use of other lipid-lowering therapy, 10 use of fibric acids, 11 diabetes mellitus, 12 prior hospitalization, 13 comorbidity score, 14 body mass index, 15 smoking, 16 body weight, 17 family history of breast cancer, 18 education, 19 religion, 20 race, 21 alcohol consumption, 22 previous neoplasms, 23 height, 24 physical activity, 25 menopausal status, 26 hysterectomy, 27 manmogram, 28 percentage of calories from fat, 29 health service utilization, 30 arthritis, 31 calendar year, 32 propensity score, 33 follow-up period, 34 history of elevated cholesterol, 35 state of residence, 36 use of oral contraceptives, 37 cardiovascular disease, 38 hypertension, 39 use of Cox2-inhibitors, 40 use of aspirin

6.7.1.3 Evicence tables: Colorectal cancer

Liu 2013(137)					
Design	N/n	Population	Risk factor	Outcome	Results*
Design: MA of RCTs and	Subtotal RCT	Both primary and	Statin use vs control	Colorectal cancer	RR: 0.96 (95% CI 0.85 to 1.08)
observational studies	N=11 n=95984	secondary prevention			NS
Search date:	Subtotal Cohort	Mainly population-	Statin use vs control	Colorectal cancer	RR: 0.93 (95% CI 0.87 to 0.99)
last update on July 30, 2013	N=13 n=7538633	based			SS
	Overall (RCT + Cohort + Case-control) N= 42 n= 7908674		Statin use vs control	Colorectal cancer	RR: 0.90 (95% CI 0.86 to 0.95) SS
	Subtotal RCT N=6 n=52590	Both primary and secondary prevention	Long-term statin use (≥ 5y)	Colorectal cancer	RR: 0.91 (95% CI 0.78 to 1.07) NS
	Subtotal Cohort N=7 n=4756550	Mainly population- based	Long-term statin use (≥ 5y)	Colorectal cancer	RR: 0.98 (95% CI 0.90 to 1.07) NS
	Overall (RCT + Cohort + Case-control)		Long-term statin use	Colorectal cancer	RR: 0.96 (95% CI 0.90 to 1.03) NS
	N=20 n=5021294		(≥ 5y)		CNI
*adjusted for confoundi	ng variables (see screer	nshot below).	J		1

Study	Study location	Statin type	Dosage of statin use	All participants	Statin users (n)	CRC cases	Exposure period	Period of follow-up (year)
Shepherd (WOSCP) [39]	Scotland	Pravastatin	40 mg daily	6,595	3,302	61	1989–1991	Mean 4.9
Sacks (CARE) [40]	USA	Pravastatin	40 mg daily	4,159	2,081	33	1989–1991	Median 5.0
Downs (AFCAPS) [41]	USA	Lovastatin	20-40 mg daily	6,605	3,304	45	1991-1993	Mean 5.2
(LIPID) [43]	Australia	Pravastatin	40 mg daily	9,014	4,512	146	1990-1992	Mean 6.0
(HPS) [44]	United Kingdom	Simvastatin	40 mg daily	20,536	10,269	145	1994–1997	Median 5.0
(ALLHAT-LLT) [42]	USA	Pravastatin	40 mg daily	10,355	5,170	84	1994-2002	Mean 4.8
Shepherd (PROSPER) [45]	United Kingdom	Pravastatin	40 mg daily	5,804	2,839	110	1997-1999	Mean 3.2
Colhoun (CARDS) [46]	UK and Ireland	Atorvastatin	10 mg daily	2,838	1,428	50	1997-2001	Median 3.9
Strandberg (4S) [47]	Nordic counties [†]	Simvastatin	20 mg daily	4,444	2,221	57	1988-1989	Median 10.4
Nakamura (MEGA) [48]	Japan	Pravastatin	10–20 mg daily	7,832	3,866	123	1994–1999	Mean 5.3
Ridker et al. [49]	In 26 countries	Rosuvastatin	20 mg daily	17,802	8,901	705	2003-2006	Median 1.9

Table 3 Descriptive characteristics of randomized control study included in the meta-analysis

WOSCP West of Scotland Coronary Prevention Study Group, CARE Cholesterol and Recurrent Events Trial investigators, AFCAPS Air Force/ Texas Coronary Atherosclerosis Prevention Study, LIPID long-term intervention with pravastatin in ischemic disease, HPS heart protection study, ALLHAT-LLT antihypertensive and lipid-lowering treatment to prevent heart attack trial, PROSPER, CARDS, 4S Scandinavian Simvastatin Survival Study, MEGA Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese

† Denmark, Finland, Iceland, Norway, and Sweden

Table 2 Descriptive characteristics of cohort studies included in the meta-analysis

Study	Study location	Cohort size	Statin type	Definition f statin use	Exposure period	Period of follow-up (year)	Patient population source and setting	Adjustment variables*
Friis et al. [26]	Denmark	334,754	Any statin	\geq 2 prescriptions	1989–2002	Mean 3.3 range 0–14 years	Prescription Database of North Jutland County and the Danish Cancer Registry; population-based	1, 2, 10, 30, 37
Jacobs et al. [27]	USA	132,136	L, P, S, F	Current use	1997–2001	Mean 5 years	Cancer Prevention Study II (CPS-II) Nutrition Cohort; population-based	1-3, 10, 16, 24, 28-33
Setoguchi et al. [28]	USA	31,723	Any statin	≥3 prescriptions	1994–2003	Mean 2.9 years	Pharmaceutical Assistance Contract for the Elderly in Pennsylvania; population-based	1–22
Farwell et al. [29]	USA	62,842	A, F, L, P, S	\geq 2 prescriptions	1997–2005	Median 5.0, range 2.0–7.2 years	Veterans Affairs (VA) administrative and clinical databases; population- based	1, 7, 10, 16, 24, 25, 27, 28, 33,
Flick et al. [30]	USA	69,115	Any statin	Used ≥ 100 days	2002-2003	Median 2.8, Max 3.5 years	California Men's Health Study (CMHS) cohort; population-based	1, 10, 16, 18, 24–27, 29, 31, 33
Singh et al. [31]	Canada	35,739	Any statin	≥2 prescriptions	1995–2005	Regular: median 3, range 1–5 years; Long-term: median 7, range 5–9 years	Manitoba Health and Healthy Living (MHHL) Population Registry; population-based	1, 2, 10, 16, 18
Haukka et al. [32]	Finland	944,962	Any statin	≥ 1 prescriptions	1996–2005	Mean 8.8 years	Social Insurance Institution (SII) and Finnish Cancer Registry (FCR); population-based	1, 2, 45
Friedman et al. [33]	USA	4,222,660	Any statin	≥ 1 prescriptions	1994–2003	Median 4.91, range 1 day–9.42 years	Kaiser Permanente Medical Care Program in northern California (KPMCP); population-based	2, 51
Hippisley et al. [34]	England & Wales	1,014,197	A, S, F, P, R	≥ 1 prescriptions	2002-2008	>5 years	Egton Medical Information System (EMIS); population-based	1, 2, 7, 18, 24, 25
Jacobs et al. [35]	USA	133,255	L, P, S, F	Current use	1997–2007	>5 years	Cancer Prevention Study II Nutrition Cohort	1, 2, 3, 7, 10, 24, 25, 28–30, 32, 33
Lee et al. [36]	USA	131,922	Any statin	Current use	1990-2006	>1,688,745 person-years	Nurses' Health Study and Health Professionals Follow-up Study; population-based	1, 2, 10, 16, 24–27, 31, 51, 52
Simon et al. [37]	USA	159,219	Any statin	Current use	2005-2010	Mean 10.7, Max 15.6 years	Women's Health Initiative (WHI); population-based	2, 3, 10, 19, 24–29, 32, 36, 43, 53
Clancy et al. [38]	Italy	266,109	Any statin	≥ 1 prescriptions	2003-2010	841,680 person-years	Emilia-Romagna Region (RER) health care database; population- based	1, 2, 4, 9–11, 16, 21

CRC colorectal cancer; Statin type: A atorvastatin, C cerivastatin, F fluvastatin, P pravastatin, R rosuvastatin, S simvastatin, L lovastatin

* Adjusted for same variables as Table 1

Adjustment variables: 1, age; 2, sex; 3, race; 4, inflammatory bowel disease; 5, benign mammary dysplasia; 6, arthritis; 7, diabetes; 8, use of gastroprotective drugs; 9, estrogen use; 10, use of nonsteroidal anti-inflammatory drugs; 11, obseity; 12, tobacco abuse; 13, mammography; 14, gynecologic examination; 15, Papanicolaou smear; 16, colonoscopy; 17, stool occult blood; 18, comorbidity score; 19, number of physician visits; 20, distinct generic medicines taken; 21, prior hospitalizations; 22, prior nursing home stay; 23, precinct of residence; 24, body mass index; 25, smoking status; 26, family history of colorectal cancer; 27, alcohol use; 28, education; 29, physical activity level; 30, hormone replacement therapy; 31, red meat consumption; 32, history of heart attack; 33, hypercholesterolemia; 34, ethnic group; 35, sports participation; 36, level of vegetable consumption; 37, use of cardiovascular drugs; 38, use of glucocorticosteroids; 39, use of immunomodulators; 40, use of 5-aminosalicylic acids; 41, use of diuretics; 42, use of angiotensin-converting enzyme inhibitors; 43, use of calcium channel blockers; 44, other lipid-lowering therapy; 45, duration of follow-up; 46, history of neoplasia; 47, diabetic nephropathy; 48, colorectal evaluation; 49, cholecystectomy; 50, sulfonylurea prescription; 51, calendar year; 52, total energy intake; 53, hypertension; 54, Cox2-inhibitors; 55, metformin use

CRC colorectal cancer; Statin type: A atorvastatin, C cerivastatin, F fluvastatin, P pravastatin, R rosuvastatin, S simvastatin, L lovastatin

6.7.1.4 Evicence tables: Gastric cancer

n servational studies	Population Asian (11, 12) and	Risk factor	Outcome	Results*
servational studies	Asian (11 12) and			
	, sian (±±, ±2) and	Statin use vs	Gastric cancer	Adjusted OR: 0.65 (95% CI 0.45 to
8	Western (13, 14, 26-29)	control		0.93)
NR				SS in favour of statin use
Ts (post-hoc MA and ividual RCT)	Europe/Japan, primary and secondary prevention	Statin use vs control	Gastric cancer	Adjusted OR: 0.83 (95% CI 0.66 to 1.05) NS
Гs iv	(post-hoc MA and	R [post-hoc MA and] Europe/Japan, primary and secondary [prevention]	REurope/Japan, primaryStatin use vss (post-hoc MA and vidual RCT)Europe/Japan, primary and secondary preventionStatin use vs	REurope/Japan, primary and secondary preventionStatin use vs controlGastric cancer

Table 1. Characteristics of included studies assessing the risk of gastric cancer (GC) with statin use

Study	Study design	Location/setting	Time Period	Exposure ascertainment	Outcome assessment	All su	bjects	On s	statins	Not o	n Statins	Confounding
						GC	Total	GC	Total	GC	Total	variables adjusted for ^a
Observational studies												
Chiu et al. [11]	C-C	Taiwan; Population-based	2005-2008	National Pharmacy Database	Medical diagnostic codes	337	1685	56	354	281	1331	1,2,6,7,10, 13
Huakka et al. [28]	Nested C-C	Finland; Population- based	1996-2005	National Pharmacy Database	Record linkage, with Finnish Cancer Registry	1667	944 962	770	472 481	897	472 481	1,2,14
Kaye et al. [13]	C-C	UK; Population-based	1990-2002	National Pharmacy Database	Medical diagnostic codes	39	18 088	4	3244	35	14 844	1,2,4,5,10, 14
Graaf et al. [27]	Nested C-C	Netherlands; Population- based	1985-2008	PHARMO Record Linkage	Hospital discharge records	104	20 105	NR	1444	NR	18 661	1,2,8,9,10, 12,14
Vinogradova et al.[14]	Nested C-C	UK; Population-based	1998-2008	National Pharmacy Database	Medical diagnostic codes	1992	10 271	322	1685	1670	8586	1,2,4,5,8,1112,13,14
Lee et al. [12]	C-C	South Korea; Hospital- based	1999-2008	Pharmacy dispensing records	Medical diagnostic codes	983	1966	99	466	884	1500	1,2,8
Friedman et al.[26]	Cohort	USA; Population-based	1994-2003	Pharmacy dispensing records	Kaiser Permanente Cancer Registry	137	4 222 660	NR	361 849	NR	3 860 811	8,13
Marelli et al. [29]	Nested C-C	USA; Population-based	1991-2009	Pharmacy dispensing records	Electronic Medical Record review	31	91 714	13	45 857	18	45 857	1,2,3,4,5
Randomized, controlled tri	als (RCTs)											
Cholesterol Treatment Trialists' (CTT) [25]	22 RCTs (post-hoc)	Europe/USA /Australia; Hospital-based	-	Individual drug dispension	Adverse event reporting by investigators	192	134 537	92	67 258	100	67 279	Variable
Matshushita et al. [30]	Three clinical trials (individual. patient data)	Japan; Hospital-based	-	Individual drug dispension	Adverse event reporting by investigators	95	13 724	43	7375	52	6349	Variable
Sato et al. [31]	RCT (post-hoc)	Japan; Hospital-based	1991-1995	Individual drug dispension	-	4	263	3	179	1	84	1,2,5

^a1, age, 2, sex, 3, race, 4, BMI, 5, smoking/alcohol, 6, *H. pylori*, 7, peptic ulcers, 8, other medications (aspirin/NSAIDs), 9, other lipid lowering agents, 10, healthcare utilization, 11, socioeconomic status, 12, comorbidities, 13, calender year, 14=region.

C-C, case-control; CTT, cholesterol treatment trialists' Collaboration; RCT, randomized, controlled trials; NR, not reported.

Table 2. Newcastle-Ottawa scale for assessment of quality of included studies—case-control studies (each asterisk represents if individual criterion within the subsection were fulfilled)

Quality assessment criteria	Acceptable(*)	Chiu et al. [11]	Huakka et al. [28]	Kaye et al. [13]	Graaf et al. [27]	Vinogradova et al. [14]	Lee et al. [12]	Marelli et al. [29]
Selection								
Is the case definition adequate?	Yes, with independent validation	-	-	-	-	-	*	-
Representativeness of cases?	Consecutive or obviously representative series of cases	*	*	*	*	*	-	*
Selection of controls?	Community controls	*	*	*	*	*	-	*
Definition of controls?	No history of gastric cancer (GC)	*	*	*	*	*	*	*
Comparability								
Study controls for age/ gender	Yes	*	*	*	*	*	*	*
Study controls for at least three additional factors	Race, smoking, body mass index (BMI), history of <i>Helicobacter pylori</i> , diet, other medication use (aspirin/NSAIDs), alcohol use, healthcare utilization	*	-	*	-	*	-	*
Exposure								
Ascertainment of exposure?	Secure record, structured interview by a healthcare practitioner, blind to case-control status	*	*	*	*	*	*	*
Same method of ascertainment of cases/ controls?	Yes	*	*	*	*	*	*	*
Non-response rate?	Same for both the groups	*	*	*	*	*	-	-
Overall quality score (maximum = 9)		8	7	8	7	8	5	7

NSAIDs, Non-steroidal anti-inflammatory drugs.

Table 3. Newcastle-Ottawa scale for assessment of quality of included studies—cohort studies (each asterisk represents if individual criterion within the subsection were fulfilled)

Quality assessment criteria	Acceptable(*)	Friedman et al. [26]
Selection		
Representativeness of exposed cohort?	Representative of average adult in community (age/sex/being at risk of disease)	*
Selection of the non-exposed cohort?	Drawn from same community as exposed cohort	*
Ascertainment of exposure?	Secured records, structured interview	*
Demonstration that outcome of interest was not present at the start of the study?	Only incident cases of gastric cancer (GC)	*
Comparability		
Study controls for age/sex?	Yes	-
Study controls for at least 3 additional risk factors?	Race, smoking, body mass index (BMI), history of <i>Helicobacter pylori</i> , diet, other medication use (aspirin/NSAIDs),alcohol use, healthcare utilization	-
Outcome		
Assessment of outcome?	Independent blind assessment, record linkage	*
Was follow-up long enough for outcome to occur?	Follow-up >3 years	*
Adequacy of follow-up of cohorts?	Complete follow-up, or subjects lost to follow-up unlikely to introduce bias	-
Overall quality score (maximum = 9)		6

NSAIDs, non-steroidal anti-inflammatory drugs.

6.7.1.5 Evicence tables: Liver cancer

N/n	Population	Risk factor	Outcome	Results*
N= 7 (observational)	Asian & Western (see	Statin use vs control	Liver Cancer	OR: 0.60 (95% CI 0.49
1 די	also table 2 below)			to 0.73)
				p=0.01
				SS in favour of statins
N= 3 (RCT)	Asian & Western (see	Statin use vs control	Liver Cancer	RR: 0.95 (95% CI 0.62 to
ו= 148 524	also table 2 below)			1.45)
				p=0.86
				NS
N= N=	= 7 (observational) = 1 791 199 = 3 (RCT)	= 7 (observational)Asian & Western (see also table 2 below)= 1 791 199Asian & Western (see= 3 (RCT)Asian & Western (see	= 7 (observational) Asian & Western (see also table 2 below) Statin use vs control = 1 791 199 also table 2 below) Statin use vs control = 3 (RCT) Asian & Western (see Statin use vs control	= 7 (observational)Asian & Western (see also table 2 below)Statin use vs controlLiver Cancer= 1 791 199Asian & Western (see Asian & Western (seeStatin use vs controlLiver Cancer= 3 (RCT)Asian & Western (seeStatin use vs controlLiver Cancer

Study	Design	Location	Setting	Time period	Total no. of subjects	No. of HCC cases	Variables adjusted for ^a		Study qua	llity ^b
Observational studies								Selection	Comparability	Outcome/exposure
Chiu et al, 2011 ¹¹	Case-control	Taiwan	Population based	2005-2008	2332	1166	1-7,10	***	**	**
El-Serag et al, 200913	Case-control	United States	Population based	2001-2002	6515	1303	1-6,9	***	**	***
Tsan et al, 2012 ¹²	Cohort	Talwan	Population based	1997-2008	33,413	1021	1, 2, 5, 7, 11	***	**	***
Friis et al, 200514	Cohort	Denmark	Population based	1989-2002	334,754	171	1, 2, 9, 15	****	*	***
Marelli et al, 201123	Cohort	United States	Population based	1991-2009	91,714	105	1, 2, 8, 12, 13, 14	****	**	***
Friedman et al, 2008 ²⁴	Cohort	United States	Population based	1994-2003	361,859	42	15	****	_	**
Khurana et al, 2005 (abstract) ²⁵	Case-control	United States	Population based	1997-2002	480,306	409	1,3	*	*	_
RCTs								Randomized	Double-blind	Withdrawals/dropour
Matsushita et al, 2010 ²⁶	RCT	Japan	Individual patient data analysis of trials	2010	13,724	12	NR	N/A	N/A	N/A
СП, 2012 ²⁷	RCT	Europe, Australia, North America	Individual patient data analysis of RCT	2012	134,537	68	NR	N/A	N/A	N/A
Sato et al, 2006 ²⁸	RCT	Japan	Secondary analysis of RCT	1991–1995	263	1	1, 2, 13	1	1	—

N/A, not applicable. ^a1, age; 2, sex; 3, HBV; 4, HCV; 5, cirrhosis; 6, alcoholic liver disease; 7, diabetes mellitus; 8, race; 9, other medications (aspirin/nonsteroidal anti-inflammatory medications, angiotensin-converting enzymes inhibitors); 10, other lipid-lowering agents; 11, socioeconomic status; 12, body mass index; 13, smoking; 14, comorbidities; 15, calendar year. ^bStudy quality assessment of observational studies was performed using the Newcastle–Ottawa scale; each asterisk represents if an individual criterion within the subsection was fulfilled. For RCTs, study quality was assessed using the Jadad scale.

	Ag	;e (y)	Sex (%	% male)		betes total)		hosis total)	HBV/HCV (% total)	dise alcol	olic liver ase or iol use total)	inhibitor/non:	werting enzyme steroidal anti- g/aspirin (% total)	lowerin	atin lipid- Ig drug (% otal)
Study	Case	Control	Case	Control	Case	Control	Case	Control	Case	Control	Case	Control	Case	Control	Case	Contro
Chiu et al ¹¹	66.1	65.9	68.9	68.9	40.8ª	34.1	39.4ª	4.9	23.9#/25.1#	5.3/3.5	5.8ª	2.5*	10.5/55.9ª/6.9	11.3/61.7/6.9	2.2ª	3.9
El-Serag et al ¹³	72	72	99	99	100	100	28.2*	1.6	1.9#/14.7#	0.2/1.8	16.5 ^a	1.2	64ª/21.2/44.6ª	67.4/20.6/47.9	4.1	3.9
Tsan et al ¹²	34.7	46.3	57.1	58.3	61.9*	23.1	11.6	10.6	100/0	100/0	8.9	6.9	52.6ª/NR/54.6ª	13.8/NR/14.1	7.8	1.2
Friis et al ¹⁴	60.7	46.6ª	57	50		NR		NR	NR		1	NR	NR/NR/80 ^a	NR/NR/48		NR
Marelli et al ²³	64.2	64.2	52.2	52.6	16.1	15.8		NR	0.06	0.07		NR	-/28.4/19.4	-/28.2/19.6		NR
Friedman et al ^{24b}		NR	L. L.	NR		NR	1	NR	NR			NR	N	R		NR
Khurana et al (abstract) ²⁵	6	1.1	9:	1.7		NR	1	NR	NR/2.	.9	1	NR	N	R		NR
Matsushita et al ²⁶	57.9	57.1	52.6	50.5	19.7	21.5		NR	NR			NR	N			NR
CTT ²⁷	6	3	7:	1		NR		NR	NR			NR .	N			NR
Sato et al ²⁸		NR	8	1.7		NR		NR	NR			NR	N	R		NR

^aP < .05, cases vs controls. ^bSeparate analyses of male and female subjects.

6.7.1.6 Evicence tables: Lung cancer

Risk factor Statin use vs control ; Statin use vs control ; Statin use vs control	Outcome Lung cancer Lung cancer	Results* RR*: 0.89 (95% CI 0.77 to 1.04) NS RR*: 0.95 (95% CI 0.85 to 1.06) p= 0.483
; Statin use vs control		NS RR*: 0.95 (95% CI 0.85 to 1.06)
	Lung cancer	RR*: 0.95 (95% CI 0.85 to 1.06)
	Lung cancer	
1		p= 0.483
		p 01.00
		NS
; Statin use vs control	Lung cancer	RR*: 1.03 (95% CI 0.96 to 1.11)
1		p=0.759
		NS
	; Statin use vs control	

Remarks:

- Reported RR's (see *) are "random", not "fixed". (p.684 in Deng 2013)
- We evaluated the methodological quality of all randomized controlled trials (RCTs) by using Jadad scoring system. Studies would be regarded as good methodological quality with scores not less than three points. Besides, we used a subgroup analysis to evaluate some influencing factors for the effect of statins on lung cancer risk.

Table 3 Assessmen	t of methodological qu	aality of RCTs by usi	ing Jadad scoring system			
Study	Randomization	Allocation concealment	Blinding (observer)	Blinding (patient)	Adequate follow-up	Jadad score
WOSCOPS (44)	*		*	*	*	4
4S (45)	*		*	*	*	4
LIPS (46)	*	*	*	*	*	5
ALLHAT (47)	*	*			*	3
HPS (48)	*	*	*	*	*	5
LIPID (49)	*	*	*	*	*	5
PROSPER (50)	*	*	*	*	*	5
AFCAPS (51)	*	*	*	*	*	5
Each asterisk "*" r	neans one point of th	e Jadad scoring sy	stem.			

6.7.1.7 Evicence tables: Esophageal cancer

Singh 2013 (141)					
Design	N/n	Population	Risk factor	Outcome	Results*
Design: SR & MA of RCTs	N= 13 (7 case-control, 5	General	Statin intake vs no	Esophageal	Adjusted OR: 0.72 (95% CI 0.60 to 0.86)
and observational studies	cohort and 1 post hoc	population	statin intake	cancer	SS in favour of statins
	analysis of 22 RCT's)				
Search date:	n= 1 132 969				
August 2012	High quality observational	General	Statin intake vs no	Esophageal	Adjusted OR: 0.70 (95% CI 0.56 to 0.88)
	studies:	population	statin intake	cancer	SS in favour of statins
	N=7				
	n=110 039				
	N= 5	Patients known to	Statin intake vs no	Esophageal	Adjusted OR: 0.59 (95% CI 0.45 to 0. 78)
	n= 2 125	have Barret's	statin intake	cancer	SS in favour of statins
		esophagus			NNT= 389
*adjusted for see table 1 be	elow.	•	•	•	· ·

Table 1. Characteristics of Included Studies Assessing the Risk of EC With Statin Use

										Study qu	ality (NOS) ^b	
Study	Design	Location	Setting	Time period	Exposure assessment	Total subjects	EC cases	Variables ^a	Selection	Comparability	Outcome/ exposure	Overall quality score (maximum, 9)
Studies on patients												
with BE Nguyen et al ⁴⁴	C-C	United States	Population based	2000-2004	Pharmacy	812	116	1-3, 6, 10	***	**	***	8
Kastelein et al ¹⁶	Cohort	The Netherlands		2000-2004	Patient interview	570	38°		****	**	***	9
			Hospital based					1, 2, 6, 8, 9	***	**	***	-
Kantor et al ¹⁸	Cohort	United States	Hospital based	1983-2009	Patient interview	411	56	1, 2, 5, 6				8
Beales et al ¹⁷	C-C	United Kingdom	Hospital based	NR	Patient interview	255	85	1, 2, 4–6, 11, 12	****	**	***	9
Altawil et al ³⁹	Cohort	United States	Hospital based	2004-2010	EMR	77	17 ^d	NR	***	**	***	8
Studies on all patients												
with EC												
Kaye and Jick ³⁶	C-C	United Kingdom	Population based	1990-2002	Pharmacy	18,088	100	NR	***	*	**	6
Vinogradova et al ¹⁹	C-C	United Kingdom	Population based	1998-2008	Pharmacy	16,200	3159	1, 2, 4, 5, 6, 7, 10	***	**	***	8
Bhutta et al ³⁴	C-C	United Kingdom	Population based	2000-2008	Pharmacy	21,475	4242	1, 2, 4-7, 11	**	**	**	6
Marelli et al ³⁸	Cohort	United States	Population based	1990-2009	EMR	91,714	73	1-3.5.6	****	**	***	9
Friedman et al ³⁵	Cohort	United States	Population based	1994-2003	Pharmacy	361,859	68	NR	****	_	***	7
Khurana et al ³⁷	C-C	United States	Population based	1998-2004	NR	484,226	659	1, 5, 7, 12	*	*	**	4
Lai et al ⁴¹	C-C	Asia	Population based	2000-2009	NR	2745	549	1, 2, 6, 12	***		*	5
CTT ⁴⁰	Post-hoc analysis of RCTs	Europe, Australia, North America	Hospital based	2012 ^e	Variable	134,537	123	1, 2, 4, 5, 10	N/A	N/A	N/A	N/A

C-C, case-control; CTT, Cholesterol Treatment Trialists'; DM, diabetes mellitus; EMR, electronic medical record; N/A, Not applicable; NR, not reported; NOS, Newcastle–Ottawa Score. ^aStudies were adjusted for the following variables: 1, age; 2, sex; 3, race; 4, body mass index; 5, smoking; 6, NSAIDs/aspirin; 7, DM; 8, BE length; 9, BE histology; 10, other comorbidities; 11, other medications; 12, alcohol use.

^bStudy quality assessment of observational studies performed using the Newcastle-Ottawa Scale (each asterisk represents whether individual criterion within the subsection were fulfilled). ^cEAC or HGD (in patients with Barrett's).

dAll dysplasia or EAC.

"Year of publication.

6.7.1.8 Evicence tables: Pancreatic cancer

Design	N/n	Population	Risk factor	Outcome	Results*
Design: SR + MA of RCTs	N= 16 (3 RCT's, 5 cohort	General population or	Statin use vs control	Pancreatic cancer	RR: 0.89 (95% CI 0.74 to 1.07)
and observational studies	en 8 case-control)	cardiovascular risk factors			NS
	n= 1 692 863				
Search date:	N= 3 (RCT's)	Coronary heart disease	Statin use vs control	Pancreatic cancer	RR= 0.99 (95% CI 0.44 to 2.21)
Up to August 2011	n=7118	(N=2) or postmenopausal			NS
		women without CV			
		disease			
	N=5 (Cohort)	Variable population, maily	Statin use vs control	Pancreatic cancer	RR: 1.05 (95% CI 0.93 to 1.19)
	n= not reported	database			NS
	N=8	Long-term follow-up	Statin use vs control	Pancreatic cancer	RR=0.94 (95% CI 0.81 to 1.08)
	n=not reported				NS
	N=5	Long-term statin use	Statin use vs control	Pancreatic cancer	RR= 0.97 (95% CI 0.76 to 1.23)
	n=not reported				NS

Quality assessment by authors:

"The quality of included RCTs was assessed based on Cochrane handbook, by recording seven items of bias risk: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias (follow-up < 4 years). Each of the seven items is scored as "low risk," "unclear risk," or "high risk."

Meanwhile, the included cohort and case-control studies were assessed based on the Newcastle-Ottawa Scale for quality of non-randomized studies in meta-analyses. The Newcastle-Ottawa Scale contains eight items that are categorized three categories: selection (three items, one star each), comparability (one item, up to two stars), and exposure/outcome (three items, one star each). A "star" presents a "high-quality" choice of individual study."

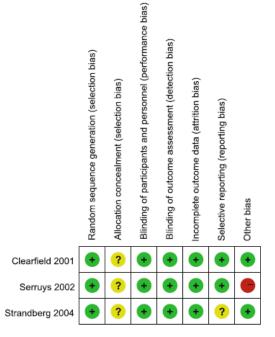


Fig. 2 Methodological quality of included randomized controlled trials: review authors' opinion on each item of bias risk based on Cochrane handbook. "Other bias" means follow-up <4 years

Cohort	Selection						Comparability		Outcome			Total
studies	Representativeness of the exposed cohort		Selection of the non-exposed cohort	Ascertainment of exposure	Outcome of interest was not present at start of study		Control for important factor or additional factor		Assessment of outcome		Adequacy omes follow-up cohorts	
Sato et al. [37]	-		-	4	-		Å		4	Å	4	5
Friedman et al. [16]	☆		Å	Å	\$		4		☆	-	-	6
Haukka et al. [36]	☆		4	Å	Å		4		☆	-	\$	7
Jacobs et al. [34]	☆		<u>4</u>	-	-		\$ \$		☆	ф	\$	7
Marelli et al. [35]	☆		☆	Å	Å		☆ ☆		☆	4	\$	9
Case-contr	rol	Selection				Compara	bility	Expos	ıre			Total
studies		Adequate definition of cases		Selection of controls	Definition of controls		for important additional	Ascert of Exp	osure	Same method of ascertainment for cases and controls	Non-response i	rate ^b score
Graaf et al.	. [38]	_	Å	†	¢	☆ ☆		☆		☆	_	7
Kaye and J	lick [13]	\$	A	☆	☆	☆ ☆		☆		☆	-	8
Dorais et a	1. [41]	\$	-	-	-	☆		☆		_	-	3
Khurana et	al. [12]	-	\$	☆	-	☆ ☆		-		☆	-	5
Coogan et	al. [39]	-	☆	_	Å	☆ ☆		-		☆	-	5
Bradley et	al. [14]	☆	_	☆	4	☆ ☆		☆		¢	-	7
Chiu et al.	[15]	-	A	_	☆	☆ ☆		☆		A	-	6
Pugh et al.	[40]	\$	-	-	-	☆ ☆		☆		_	-	4

Table 2 Methodological quality of included cohort studies and case-control studies based on the Newcastle-Ottawa Scale

^a Follow-up >4 years

^b Same rate for both groups

6.7.1.9 Evicence tables: Prostate cancer

N/n	Population	Risk factor	Outcome	Results*	
N= 27 (15 cohort and 12 case-control studies)	Male subjects	Statin use vs control	Prostate	RR: 0.93 (95% CI 0.87 to 0.99) p=0.03	
n =1 893 571			cancer	SS in favour of statin use	
N=11 (7 cohort and 4 case- control studies) n=273 798	Male subjects Long-term statin use (study definition varied >2.85 y to >10y)	Statin use vs control	Prostate cancer	RR: 0.94 (95% CI 0.84 to 1.05) p=0.31 NS	
N=15 (cohort) n=1 812 005	Male subjects	Statin use vs control	Prostate cancer	RR: 0.93 (95% CI 0.87 to 1.01) p=0.09 NS	
	N= 27 (15 cohort and 12 case-control studies) n =1 893 571 N=11 (7 cohort and 4 case- control studies) n=273 798 N=15 (cohort)	N= 27 (15 cohort and 12 case-control studies) n =1 893 571Male subjectsN=11 (7 cohort and 4 case- control studies) n=273 798Male subjects Long-term statin use (study definition varied >2.85 y to >10y)N=15 (cohort)Male subjects	N= 27 (15 cohort and 12 case-control studies) n =1 893 571Male subjectsStatin use vs controlN=11 (7 cohort and 4 case- control studies) n=273 798Male subjects Long-term statin use (study definition varied >2.85 y to >10y)Statin use vs controlN=15 (cohort)Male subjectsStatin use vs control	N= 27 (15 cohort and 12 case-control studies) n =1 893 571Male subjectsStatin use vs controlProstate cancerN=11 (7 cohort and 4 case- control studies) n=273 798Male subjects Long-term statin use (study definition varied >2.85 y to >10y)Statin use vs controlProstate cancerN=15 (cohort) r = 1 812 005Male subjectsStatin use vs controlProstate cancer	

The pooled RR of the studies that were able to either control for PSA levels by comprehensive PSA screening of the entire population or adjusted for PSA testing was 0.91 (95% CI 0.81–1.02, p=0.13) Note: only pubmed searched.

Author, Year* (Country)†	Study period (years)	All male subjects		Description of exposure	Definition of statin use¶	Number of variables adjusted #
Lovastatin study groups, 1993 (U.S., Canada & Finland) [11]‡	NR	504	5	a	A	1
Blais et al., 2000 (Canada) [15]§	6 (1988-1994)	858	78	b	NR	1, 27, 31, 33, 34
Graaf et al., 2004 (Netherlands) [16]§	3 (1995–1998)	9,785	186	c	NR	1, 3, 5, 11-13, 27, 29-31
Kaye and Jick, 2004 (U.K.) [12]§	12 (1990-2002)	8,020	569	d	в	1, 4, 19, 32
Friis et al., 2005 (Denmark) [9]‡	13 (1989-2002)	168,133	1407	e	с	1, 5, 28, 29
Shannon et al., 2005 (U.S.) [17]§	7 (1997-2004)	302	100	e	с	1-5, 25, 27
Platz et al., 2006 (U.S.) [10]‡	12 (1990-2002)	34,989	2,579	d	Α	1, 3, 4, 8, 10, 19-26
Sato et al., 2006 (Japan) [13]‡	14 (1991-2005)	215	2	f	Α	1
Flick et al., 2007 (U.S.) [8]‡	2 (2002-2004)	69,047	888	g	В	1-3
Murtola et al., 2007 (Finland) [14]§	7 (1995-2002)	49,446	24,723	g	с	1, 11-17
Boudreau et al., 2008 (U.S.) [25]‡	2 (1990-2005)	83,372	2,532	9	С	1, 3, 5, 7, 27
Friedman et al., 2008 (U.S.) [34]‡	9 (1994–2003)	NR	1,706	e	в	35
Smeeth et al., 2008 (U.K.) [35]‡	11 (1995-2006)	364,675	3,525	d	В	1, 3, 9, 11-14, 27, 28, 35-38
Agalliu et al., 2008 (U.S.) [37]§	13 (2002-2005)	1,943	1,001	d	Α	1, 2, 4, 8, 19
Breau et al., 2010 (U.S.) [26]‡	17 (1990-2007)	2,447	224	d	Α	1, 3, 5, 9, 39-41
Haukka et al., 2010 (Finland) [30]‡	9 (1996-2005)	10,928	1051	d	с	1, 42
Hippisley et al., 2010 (England & Wales) [36]‡	6 (2002-2008)	990,495	7,129	d	В	NR
Murtola et al., 2010 (Finland) [5]‡	8 (1996-2004)	23,208	1,594	d	с	1, 8, 10, 12-17, 24, 35
Coogan et al., 2010 (U.S.) [31]§	6 (1992-2008)	3,374	1,367	e	Α	2, 4-6, 18, 19, 32, 43, 44
Loeb et al., 2010 (U.S.) [27]§	6 (2003-2009)	1,351	1,351	e	в	45
Farwell et al., 2011 (England) [6]‡	10 (1997-2007)	55,875	546	h	В	1, 3, 7-9, 18, 19, 39, 46-52
Tan et al., 2011 (Ohio) [28]‡	10 (2000-2010)	4,204	1,797	9	в	1, 2, 4, 53, 54
Jacobs et al., 2011 (U.S.) [38]‡	10 (1997-2007)	3,913	NR	i.	Α	1-10, 18
Chang et al., 2011 (Taiwan) [32]§	3 (2005-2008)	1,940	388	g	с	3, 5, 9, 27, 32, 39, 55, 56
Fowke et al., 2011 (U.S.) [33]§	8 (2002-2010)	2,148	1029	g	Α	1-4, 9, 8-10, 24, 45, 54, 55
Mondul et al., 2011 (Maryland) [29]§	13 (1993-2006)	2,399	683	d	Α	1, 2, 4, 10, 13, 19, 24
Marcella et al., 2011 (New Jersey) [7]§	3 (1997-2000)	767	387	g	в	1, 2, 4, 6, 13, 57, 58

PCa, Prostate cancer; NR, Not reported.

*Publication year; Country of study conducted;

[‡]Cohort studies;

Case-control studies

Ia, systematic use of lovastatin vs. SEER data; b, any use of statin vs. use of bile acid-binding resins; c, use of statins vs. no use of statins; d, current use of statins vs. no current use of statins; e, any use of statins vs. no use of statins; f, systematic use of statins vs. general population; g, ever use of statins vs. no use of statins; h, use of statins vs. use of anti-hypertensives; i, current use of cholesterol-lowering drugs vs. never use of cholesterol-lowering drugs.

Table 1. Studies included in the meta-analysis.

¹A, self-reported; B, medical records; C, prescription database. ^{#1}A, self-reported; B, medical records; C, prescription database. ^{#1}A, self-reported; B, medical records; C, prescription database. ^{#1}A, age; Z, race; 3, diabetes mellitus; 4, BM; 5, NSAID use; 6, education; 7, elevated cholesterol; 8, history of PSA testing; 9, cardiovascular disease; 10, family history of prostate cancer; 11, use of diuretics; 12, use of calcium channel blockers; 13, use of angiotensin-converting enzyme inhibitors; 14, use of angiotensin receptor blockers; 15, use of metformin; 16, use of sulfonylureas; 17, use of insulin; 18, alcohol use; 19, smoking; 20, height; 21, major ancestry; 22, vasectomy; 23, vigorous physical activity; 24, aspirin use; 25, total energy intake; 26, intakes of calcium, fructose, a-linolenic acid, tomato sauce, red meat, fish, supplemental zinc, and high intake of vitamin E; 27, use of other lipid-lowering drugs; 28, use of cardiovascular drugs; 29, use of hormones; 30, prior hospitalisation; 31, chronic disease score; 32, frequency of physician visits; 33, previous neoplasm; 34, use of fibric acids; 35, calendar period of PSA screening; 36, propensity score; 37, cancer; 38, dementia; 39, hypertension; 40, use of 5-α reductase inhibitors; 41, use of α-blockers; 42, follow-up period; 43, study center; 44, interview year; 45, clinical stage and biopsy gleason score; 46, weight; 47, thyroid disease; 48, renal failure; 49, chest pain; 50, mental illness; 51, lung disease; 52, gastro-intestinal disease; 53, number of cores taken; 54, prostate volume; 55, benign prostatic hyperplasia; 56, matching variables. doi:10.1371/journal.pone.0046.691.t001

Chan 2012 1781 (144)	Chan 2012 1781 (144)									
Design	N/n	Population	Risk factor	Outcome	Results					
Design: prospective cohort followed between 2000 and 2008	n= 5069 n=4120	 -Community dwelling, ambulatory men who were age 65 or older and living in 6 geographic regions of the United States in 2000 to 2002 -Excluded: self-reported history of PCa or any patient with missing statin data 	Statin use (any use in the previous two weeks) vs control Statin use (any use in the previous two weeks) vs control	Prostate cancer Prostate cancer	Age and site adjusted OR = 1.24 (95% Cl 0.98 to 1.57) p=0.07 NS Multivariate*OR=1.07 (95% Cl 0.82 to 1.40) p=0.63 NS					
*adjusted for age, study sit history	e, race, body ma	ss index, marital status, family history of p	rostate cancer, marital status	s, comorbid condition	ns, physical activity, and smoking					

6.7.1.10 Evicence tables: Renal cancer

Zhang 2013 1625 (145)									
Design	N/n	Population	Risk factor	Outcome	Results*				
Design: MA of	N= 12 (2 RCT's, 5 cohort	European, USA, Asian	Statin use vs control	Renal/Kidney	RR = 0.92 (95% CI 0.71 to				
observational studies and	and 5 case-control)			cancer	1.19)				
randomized trials					p<0.001				
					NS				
Search date:	N=2 (RCT's)	UK, USA	Statin use vs control	Renal/Kidney	RR=1.01 (95% CI 0.57 to 1.79)				
Oct 2012				cancer	p=0.509				
					NS				
	N=5 (cohort)	USA, UK, Japan	Statin use vs control	Renal/Kidney	RR= 1.07 (95% CI 0.96 to 1.20)				
				cancer	p=0.217				
					NS				
	N= 6		Long-term statin use	Renal/Kidney	RR = 1.01 (95% CI 0.83 to 1.22)				
				cancer	p=0.753				
					NS				
*adjusted for different conf	founders, see table 1.	1		L					

Table 1. Study characteristics

Author	Year	Country	Study design	Study period	Treated n/N or cases n/N	Contros n/N	Description of Exposure	Statin type	Confounders for adjustment
Chiu HF	2012	Taiwan	case-control	2005-2009	38/177	143/708	a	A, F, L, P, R, S	7, 10, 12, 17, 22
Wei Liu	2012	USA	cohort	1990-2008	66/22,208	211/78,722	a	NR	4, 7, 8, 9, 10, 18, 22
Jacobs EJ	2011	USA	cohort	1997-2007	140/331,955 person-years	241/710,184 person-years	d	L, P, S, F	1, 2, 4, 6, 7, 8, 10, 18, 19, 20, 21, 22
Hippisley-Cox J	2010	England & Wales	cohort	2002-2008	NR/225,922	NR/1,778,770	Ъ	A, F, P, R, S	1, 2, 3, 4, 7, 8, 16, 22
Khurana V	2008	USA	case-control	1998-2004	432/1,446	164,009/482,287	Ъ	NR	1, 2, 4, 8, 11
Friedman GD	2008	USA	cohort	1994-2003	135/361,859	NR/NR	a	A, C, F, L, P, R, S	8, 23
Coogan PF	2007	USA	case-control	1991-2005	16/226	190/3,900	c	NR	1, 4, 5, 6, 9, 11, 16
Sato S	2006	Japan	cohort	1991-1995	0/179	1/84	e	Р	1, 2
HPS	2005	UK	RCT	1994-1997	23/10,269	22/10,267	c	s	Randomization
Kaye JA	2004	UK	case-control	1990-2002	3/39	15/14,844	Ъ	NR	1, 4, 8
Graaf MR	2004	Netherlands	case-control	1995–1998	NR/101	986/16,976	с	A, C, F, P, S	1, 3, 7, 10, 12, 13, 14, 15, 16, 17
Clearfield M	2001	USA	RCT	NR	0/499	1/498	b	L	Randomization

NR= Not Reported;

HPS = Heart Protection Study Collaborative Group;

Treated n/N = No. of cases in the treated group, for cohort studies; cases n/N = No. of exposed in the cases, for case–control studies;

Description of exposure: a = any use of statins versus no use of statins; b = current use of statins versus no current use of statins; c = regular use of statins versus no use of statins; d = current use of cholesterol-lowering drugs; e = systematic use of statins versus general population;

Statin type: A= Atorvastatin, C = Cerivastatin, F= Fluvastatin, L = Lovastatin, P= Pravastatin, R= Rosuvastatin, S= Simvastatin;

Confounders for adjustment: 1 = age; 2 = sex; 3 = comorbidity score; 4 = body mass index; 5 = religion; 6 = education; 7 = NSAID use; 8 = smoking; 9 = alcohol use; 10 = diabetes mellitus; 11 = race; 12 = use of other lipid-lowering drugs; 13 = use of calcium channel blockers; 14 = use of angiotensin-converting enzyme inhibitors; 15 = use of diuretics; 16 = use of hormones; 17 = hospitalizations; 18 = physical activity; 19 = frequency of physician visits; 20 = cholesterol; 21 = heart disease; 22 = hypertension; 23 = state of residence

6.7.1.11 Evicence tables: Skin cancer

Design	N/n	Population	Risk factor	Outcome	Results*
Design: SR + MA of RCTs	N= 24 (17 studies were	Europe, USA, Asia, New	Statin use	Melanoma skin cancer	RR=0.94 (95% CI 0.85 to 1.04)
and meta-analyses	post-hoc analyses or RCTs,	Zealand			p=0.07
	5 were case–control				NS
Search date:	studies, and 2 were				
June 2013	cohort studies)				
	n= 414 627				
	N=8		Long-term	Melanoma skin cancer	RR= 0.93 (95% CI 0.73 to 1.18)
			statin use		NS
	N=14 (12 studies were		Statin use	Non-melanoma skin	RR=1.03 (95% CI 0.90-1.19) (=
	post-hoc analyses or RCTs,			cancer	Random effect model)
	1 was case-control study				NS
	and 1 was cohort study)				
	n= 103 260				

Quality assessment. The criteria adapted from the Cochrane handbook for systematic reviews of interventions (Higgins et al, 2011) and the validated

Newcastle–Ottawa scale (NOS) (Wells et al, 2000) were used to assess the methodological quality of RCTs, case–control and cohort studies, respectively.

Design	N/n	Population	Risk factor	Outcome	Results*
Design: cohort	n= 454 937	Finland population	Statin use vs no	Merkel cell carcinoma	SIR 1.25 (95% CI 0.93 to 1.65)
			statin use		NS
		Finland population	Statin use vs no	Merkel cell carcinoma	SIR= 3.16 (95% CI 0.65 to 9.23)
patients with listed		Ages <60 years	statin use		NS
purchases of statins					
during		Finland population	Statin use vs no	Merkel cell carcinoma	SIR=1.94 (95% CI 1.23 to 2.90)
1994–2007		Ages 60–74 years	statin use		SS
		Finland population	Statin use vs no	Merkel cell carcinoma	SIR= 0.89 (95% CI 0.57 to 1.31)
FU until dec 2009		Ages ≥ 75 years	statin use		NS
Mean length of follow-up		Finland population	Statin use vs no	Merkel cell carcinoma at	RR=0.79 (95% CI 0.67 to 0.92)
9.2 .			statin use	each 5 year step when	SS
				moving towards older age	["The relative risk of MCC
				groups	decreased significantly, 0.79 fold (95% CI 0.67–
					0.92), at each 5 year
					step when moving towards older age groups."]

"There was no significant variation in SIR related to length of follow-up or gender."

standardized incidence ratio (SIR): the observed number of cases was divided by the expected number.

6.7.1.12 Evicence tables: Hematological cancer

Bonovas 2007(148)					
Design	N/n	Population	Risk factor	Outcome	Results*
Design:SR + MA of RCTs	N= 14 (six RCTs, seven		Statin use vs no		
and observational studies	case-control and one		statin use		
	cohort study)				
Search date:	RCTs	mean age 61 y,		Haematological	RR = 0.92 (95% CI
(dec 2006)	N=6	mean FU 6.1y		malignancies	0.72, 1.16)
	n=46 852				NS
	Observational	Europe, Canada, USA,		Haematological	RR = 0.83, (95% CI 0.53, 1.29)
	N= 8 (7 case-control, 1	Japan		malignancies	NS
	cohort)				high heterogeneity between
	n= 365 201				the studies, but not explored
*adjusted for : see below			•		· · · ·

Randomized, doul	ble-blind, placebo-con	trolled trials include	ed in	the meta-analysis
------------------	------------------------	------------------------	-------	-------------------

	Reported						
Study	Agent	subjects	(years)	Statin group	Placebo group	RR (95% CI)	outcome
4S [24]*	Simvastatin	4444	Median: 10.4	17 of 2221	19 of 2223	0.90 (0.47, 1.72)	Incident haematological malignancies
ALERT [25]	Fluvastatin	2094	Mean: 5.1	11 of 1045	18 of 1049	0.61 (0.29, 1.29)	Incident haematological malignancies
HPS [26]	Simvastatin	20536	Mean: 5.0	64 of 10 269	52 of 10267	1.23 (0.85, 1.77)	Incident haematological malignancies
LIPID [27]	Pravastatin	9014	Mean: 8.0	37 of 4512	52 of 4502	0.71 (0.47, 1.08)	Incident lymphomas and leukaemias
AFCAPS [28]	Lovastatin	6605	Mean: 5.2	12 of 3304	11 of 3301	1.09 (0.48, 2.47)	Incident lymphomas
CARE [29]	Pravastatin	4159	Mean: 4.8	8 of 2081	10 of 2078	0.80 (0.32, 2.02)	Incident Iymphomas and Ieukaemias

RR, Relative risk (risk ratio); CI, confidence interval. *Numbers in parentheses, reference citation.

Observational studies:

Study	Study location	Study design	All subjects	HM cases	RR (95% CI)	Control for potential confounders*	Type of HM studied
Fortuny <i>et al.</i> 2006 [30]†	Czech Rep., France, Germany, Ireland, Italy and Spain	C-C	4568	2362	0.61 (0.45, 0.84)	1–3	Incident lymphoma
lwata <i>et al.</i> 2006 [31]	Japan	C-C	1100	221	2.24 (1.37, 3.66)	1, 2, 4–6	Incident lymphoma and myeloma
Landgren <i>et al.</i> 2006 [32]	USA	C-C	870	179	0.4 (0.2, 0.8)	1, 7–9	Incident myeloma
Friis <i>et al.</i> 2005 [33]	Denmark	Cohort	334 754	1626	0.88 (0.60, 1.29)	1, 2, 10–13	Incident haematological malignancies
Graaf <i>et al.</i> 2004 [34]	The Netherlands	C-C	20105	93	0.28 (0.06, 1.30)	1, 2, 12–22	Incident lymphoma
Zhang <i>et al.</i> 2004 [35]	USA	C-C	1318	601	0.5 (0.4, 0.8)	1, 9, 23, 24	Incident non-Hodgkin lymphoma
Blais <i>et al.</i> 2000 [36]	Canada	C-C	264	24	2.17 (0.38, 12.36)	1, 2, 4, 18, 25, 26	Incident lymphoma
Traversa <i>et al.</i> 1998 [37]	Italy	C-C	2222	202	1.5 (0.8, 2.6)	1, 2	Incident leukaemia

HM, Haematological malignancy; RR, relative risk; CI, confidence interval. *1, age; 2, gender; 3, country; 4, year of visit; 5, serological status for antihepatitis B surface antigens; 6, serological status for antihepatitis C virus antibodies; 7, race; 8, education; 9, body mass index; 10, calendar period; 11, use of cardiovascular drugs; 12, use of nonsteroidal anti-inflammatory drugs; 13, use of hormone replacement therapy; 14, geographical region; 15, duration of follow-up; 16, diabetes mellitus; 17, prior hospitalizations; 18, chronic disease score; 19, chronic use of diuretics; 20, chronic use of angiotensin-converting enzyme inhibitors; 21, chronic use of calcium channel blockers; 22, use of other lipid-lowering therapy; 23, menopausal status; 24, family history of non-Hodgkin lymphoma in first-degree relatives; 25, previous neoplasm; 26, use of fibric acids. †Numbers in parentheses, reference citation.

Jacobs 2011(149)					
Design	N/n	Population	Risk factor	Outcome	Results*
Design:	n=	Population based	Current use	Non-	RR: 0.74 (95%Cl 0.62 to
prospective	133 255	(Cancer	of	Hodgkin	0.89)
cohort		Prevention Study	cholesterol-	Lymphoma	SS in favour of statin use
		II Nutrition)	lowering		
1997-2007			drugs for five		
			or more		
			years		
*adjusted for : /	Adjusted for ag	e, sex, race, educatio	on, smoking, BMI	, physical activ	vity level, nonsteroidal anti-
inflammatory d	rug use, hormo	ne therapy, history o	of elevated choles	sterol, heart	
disease, diabete	es, and hyperte	nsion.			

6.7.2 Summary and conclusions: site-specific cancers

6.7.2.1 Bladder cancer

A systematic review and meta-analysis (Zhang 2013(135)) searched all RCTs and observational studies that reported on the incidence of bladder cancer.

A pooled analysis of 3 RCTs found no statistically significant difference between statin use and placebo for bladder cancer (RR: 0.83; 95% CI 0.63 to 1.10).

A pooled analysis of 5 cohort studies also found no statistically significant difference (RR: 1.11; 95% CI 0.91 to 1.35).

Pooling RCTs, cohort studies and case-control studies also resulted in no statistically significant difference in bladder cancer between statin use an no statin use.

The authors did an extensive quality assessment of the included studies.

GRADE: MODERATE quality of evidence

6.7.2.2 Breast cancer

A systematic review and meta-analysis of observational studies (cohort and case-control) examined the association between statin use and breast cancer (Undela 2012(136).

The pooled result of 24 studies showed no statistically significant association between statin use and breast cancer.

The pooled result of 10 studies of long term statin use showed no statistically significant difference in the incidence of breast cancer between statin use and no statin use RR: 1.03; 95% CI 0.96 to 1.11).

GRADE: LOW quality of evidence

6.7.2.3 Colon cancer

Liu 2013(137) did a systematic review and meta-analysis on RCTs and observational studies that reported colorectal cancer.

The pooled results of 11 RCTs finds no statistically significant difference in the incidence of colon cancer between statin use and placebo (RR: 0.96; 95% CI 0.85 to 1.08).

The pooled result of 13 cohort studies finds that statin use is associated with a lower incidence of colon cancer (RR: 0.93; 95% CI 0.87 to 0.99).

Pooling the results of RCTs, cohort studies and case-control studies also shows an association between statin use and a lower incidence of colon cancer.

When long-term statin use (\geq 5y) is compared to no statin use, there is no statistically significant difference in the incidence of colon cancer. This result is consistent between the pooled analysis of RCTs, the pooled analysis of cohort studies and the pooled analysis of RCTs and observational studies.

We conclude that statins do not increase the risk of colon cancer. GRADE: *LOW quality of evidence*

6.7.2.4 Gastric cancer

Singh 2013(138) conducted a systematic review and meta-analysis of RCTs and observational studies concerning statin use and the risk of gastric cancer.

In a pooled analysis of observational studies (mainly case-control studies), statins are associated with a lower incidence of gastric cancer (OR: 0.65; 95% CI 0.45 to 0.93).

When considering evidence from RCTs (3 post hoc analyses: both meta-analyses and individual RCTs), no statistically significant difference in gastric cancer incidence is found between statin use and no statin use (OR: 0.83; 95% CI 0.66 to 1.05).

Statins do not seem to increase the risk of gastric cancer.

GRADE: LOW quality of evidence

The evidence for a lower risk of gastric cancer with statin use is weak.

Note: a more recent systematic review and meta-analysis (Wu 2013(150)) that did not report any quality assessment, updated these results by replacing 1 Taiwanese case-control study by a more recent version. They find the same results as Singh 2013.

6.7.2.5 Liver cancer

A systematic review and meta-analysis of observational studies and RCTs by Singh 2013(139)compared statins to no statin use for the outcome liver cancer.

A pooled analysis of 7 observational studies (both cohort and case-control) finds an association between statin use and al lower incidence of liver cancer compared to no use (OR: 0.60; 95% CI 0.49 to 0.73).

Information from RCTs (2 individual patient data meta-analyses and 1 RCT) finds no statistically significant difference in the incidence of liver cancer between statin use and placebo (RR: 0.95; 95% CI 0.62 to 1.45).

Statin use is not associated with an increased risk of liver cancer. The evidence of a decreased risk with statin use is weak

GRADE: LOW quality of evidence

6.7.2.6 Lung cancer

A systematic review and meta-analysis by Deng 2013(140) searched all observational studies (cohort and case-control) and RCTs that reported the outcome lung cancer.

No statistically significant difference in lung cancer incidence is found between statin use and no statin use. This result is found in a pooled analysis of 8 RCTs (RR: 0.95; 95% CI 0.85 to 1.06) and in a pooled analysis of 15 observational studies (RR: 0.89; 95% CI 0.77 to 1.04).

A pooled analysis of 6 observational studies among elderly people also found no statistically significant difference in lung cancer incidence between statin us and no statin use.

Statin use does not seem to influence the risk of lung cancer *GRADE: LOW quality of evidence*

6.7.2.7 Esophageal cancer

A systematic review and meta-analysis by Singh 2013(141) looked at all RCTs and observational studies that reported esophageal cancer. 13 trials were included, representing 1 132 969 patients.

In a meta-analysis of all included trials (N=13, of which 1 was a post-hoc analysis of 22 RCTs), statin use was associated with a lower risk of esophageal cancer (Adjusted OR: 0.72 (95% CI 0.60 to 0.86).

This association was also found when performing a meta-analysis of 7 high-quality observational studies and in a meta-analysis of 5 studies in patients with Barret's esophagus.

Note: in the post-hoc analysis of 22 RCTs that was included, the risk of esophageal cancer was not significantly different between statin use and control.

GRADE: LOW quality of evidence

6.7.2.8 Pancreatic cancer

A systematic review and meta-analysis (Cui 2012(142)) searched for all RCTS and observational studies that report the outcome pancreatic cancer. 16 studies were included (3 RCTs, 5 cohortstudies and 8 case-controlstudies), representing 1 692 863 patients.

A meta-analysis of all studies combined, found no association between statin use and pancreatic cancer. In a meta-analysis of the 5 cohortstudies, also no association was found.

A meta-analysis of the 3 RCTs also found no statistically significant difference in pancreatic cancer risk between statin use and control.

GRADE: LOW quality of evidence

6.7.2.9 Prostate cancer

A systematic review and meta-analysis (Bansal 2012(143)) searched for all observational studies that examine the association between statin use and prostate cancer. 15 cohort and 12 case-control studies were found, representing 1 893 571 patients.

A meta-analysis of 27 studies found a statistically significant inverse association between statin use and prostate cancer. The result verged on borderline statistical significance (RR: 0.93; 95% CI 0.87 to 0.99).

When only studies with long-term statin use were pooled (N=11), no association between statin use and prostate cancer was found (RR: 0.94; 95% CI 0.84 to 1.05).

When only cohort studies were pooled, no statistically significant association between statin use and prostate cancer was found (RR: 0.93; 95% CI 0.87 to 1.01).

When considering only trials that control for PSA levels, there is also no statistically significant association found.

One additional prospective cohort study of 5069 patients (Chan 2012(144)) was published after the search date of the meta-analysis by Bansal 2012.

In this study, statin use was not associated with prostate cancer (OR=1.07; 95% CI 0.82 to 1.40).

We conclude that there is no association between statin use and prostate cancer. *GRADE: LOW quality of evidence*

6.7.2.10 Renal cancer

A systematic review and meta-analysis by Zhang 2013(145) searched for all RCTs and observational studies that report on statin use and renal cancer.

In a pooled analysis of all studies (2 RCT's, 5 cohort and 5 case-control), no association is found between statin use and renal cancer.

No association was found among RCTs (RR= 1.01; 95% CI 0.57, 1.79) and among cohort studies (RR= 1.07, 95%CI 0.96 to 1.20).

GRADE: LOW quality of evidence

6.7.2.11 Skin cancer

A systematic review and meta-analysis by Li 2013(146) searched for all RCTs and observational studies that report on statin use and skin cancer.

In a pooled analysis of 24 studies (17 RCTs or post-hoc analyses, 5 case-control, 2 cohort), no statistically significant association is found between statin use and melanoma skin cancer (RR=0.94; 95% CI 0.85 to 1.04).

When pooling 8 studies on long term statin use, there is also no statistically significant association observed (RR= 0.93; 95% CI 0.73 to 1.18).

In a pooled analysis of 14 studies (12 RCTs or post-hoc analyses,1 case-control and 1 cohort), no association between statin use and non-melanoma skin cancer was found (RR=1.03; 95% CI 0.90-1.19).

GRADE: LOW quality of evidence

A Finnish cohort study (Sahi 2012(147)) that was published after the search date of Li 2013 followed 454 937 statin users for a mean of 9.2 years and compared them to the general population for the incidence of Merkel cell carcinoma (MCC).

No statistically significant association was found between statin use and MCC, when compared to the incidence rate in the general population (SIR 1.25; 95% CI 0.93 to 1.65) . A statistically significant

association between statin use and increased incidence of MCC was found in the age group 60-74y (SIR 1.94; 95% CI 1.23 to 2.90).

The authors report that "The relative risk of MCC decreased significantly, 0.79 fold (95% CI 0.67–0.92), at each 5 year step when moving towards older age groups." The authors conclude that the risk of MCC among statin users was elevated up to the age of 70 and decreased significantly together with increasing age.

Because of methodological problems (e.g. lack of correcting for possible confounders, low event rates), these results are to be interpreted with caution.

GRADE: VERY LOW quality of evidence

6.7.2.12 Hematological cancer

A systematic review and meta-analysis by Bonovas 2007(148) searched for all RCTs and observational studies that report on statin use and hematological cancer.

When pooling the results of 6 RCTs of 46 852 patients with an average of 6.1 years of follow-up, no statistically significant difference in haematological malignancies is found between statin use and no statin use (RR = 0.92 95% Cl0.72, 1.16).

When pooling the results of 8 observational studies (7 case-control, 1 cohort), no association is found between statin use and haematological malignancies.

GRADE: VERY LOW quality of evidence

The following study appeared after the search date of Bonovas 2007.

A US population based cohort study by Jacobs 2011 (149) in 133 255 participants compared the use of cholesterol-lowering drugs to no use for the outcome Non-Hodgkin lymphoma. An inverse association was found between current use of cholesterol-lowering drugs for five or more years and the risk of non-Hodgkin Lymphoma (RR: 0.74; 95%CI 0.62 to 0.89). *GRADE: LOW quality of evidence*

6.7.3 Total cancer

Information from RCTs

Different meta-analyses of RCTs have reported on the risk of cancer.

-In the meta-analysis by Taylor 2013(32), no statistically significant difference between statins and placebo is observed in the incidence of cancer.

-Savarese 2013(67) found that, In elderly patients without established cardiovascular disease, there is no statistically significant difference in new onset cancer between statin treatment and placebo.

The CTT collaboration published a meta-analysis of individual patient data from 22 placebocontrolled RCTs (and 5 RCTs of high dose statin versus lower dose, not reported here) to evaluate the risk of cancer(151).

The rate ratio of cancer with statins compared to placebo is 1.00 (95% Cl 0.96-1.05).

The rate ratio of cancer mortality is 1.00 (95% CI 0.93–1.08) with statin use compared to placebo.

Information from observational studies.

2 recent, large, well conducted cohort studies also found no statistically significant association between statin use and cancer:

- A US population based cohort study by Jacobs 2011 (149) in 133 255 participants compared the use of cholesterol-lowering drugs to no use. No association was found between current use ≥5y of cholesterol-lowering drugs and overall cancer incidence (RR 0.97; 95% CI 0.92–1.03).

-Marelli 2011(152) conducted a retrospective cohort analysis of 45,857 matched pairs on the incidence of cancer in older adults who have and who have not used statins. No association was found between statin use and cancer incidence (HR 1.04; 95% CI 0.99 - 1.09).

Conclusion

Statins do not influence the risk of cancer. GRADE: LOW to MODERATE quality of evidence

7 Evidence tables and conclusions: safety of other lipid lowering drugs

7.1 Fibrates and risk of myopathy

7.1.1 Evidence tables

Design	N/n	Population	Risk factor	Outcome	Results
Design:	n= 584,784	-cohort of new users of statins	Statins only	Rhabdomyolysis	IR: 3.30 per 100,000 Patient-Years
retrospective cohort		(86.9%)	n=484345		95%CI: 1.93 to 5.30
study		fibrates (12.5%) or both (0.6%), using claims		Myopathy	IR: 1.76 per 100,000 Patient-Years
					95%CI: 0.83 to 3.32
Study period of January 1,		data from a large United States health insurer	Fenofibrate only	Rhabdomyolysis	IR: 2.78 per 100,000 Patient-Years
2004,		-The fibrate initiators and	n=32769		95%CI: 0.25 to 12.97
to June 30, 2007		combination initiators were			(vs statins only: Adjusted IRR*: 0.85
	somewhat younger, were more likely to be male, and had a higher proportion with histories of diabetes than the statin initiators.				95%CI: 0.11 to 6.49)
		higher proportion with histories		Myopathy	IR: 0.00 per 100,000 Patient-Years
				95%Cl: 0.00 to 6.86	
			Statins and	Rhabdomyolysis	IR: 15.00 per 100,000 Patient-Years
			fenofibrate		95%CI: 5.02 to 35.67
			n=36319		(vs statins only: Adjusted IRR*: 3.75
					95%CI: 1.23 to 11.40)
				Myopathy	IR: 3.75 per 100,000 Patient-Years
					95%CI: 0.34 to 17.48
					(vs statins only: Crude IRR: 2.13
					95%CI: 0.27 to 17.05)

Remarks:

-This study focused only on outcomes associated with inpatient hospital care.

-Authors did not match treatment groups, so there may be unmeasured confounders that are associated with the reason for being prescribed a combination of treatments and the risk for the adverse event.

7.1.2 Summary and conclusions. Fibrates and risk of myopathy

A retrospective cohort study by Enger 2010(153) studied 584 784 patients on statins, fibrate or combination therapy of a statin + a fibrate. Follow-up was 3 years.

Compared to statin use only, the combination of fenofibrate and a statin was associated with a higher risk of rhabdomyolysis (IRR (incidence rate ratio) 3.75; 95%CI: 1.23 to 11.40). No adjustment was made for important risk factors for rhabdomyolysis.

For myopathy, no statistically significant difference was found between statin + fenofibrate compared to a statin only.

GRADE: VERY LOW quality of evidence

7.2 Fibrates and cancer risk

7.2.1 Evidence tables

Bonovas 2012(154)					
Design	N/n	Population	Risk factor	Outcome	Results
SR and MA of RCTs	N= 17 n= 44 929	-mean age 55 y - Coronary Artery Disease: (n=8)	Fibrates Vs placebo	Cancer incidence (n=10)	RR: 1.02 (95%Cl 0.92-1.12)
Search date: (jan-2012)	Average follow-up	-Diabetes Type 2 (n=4) - Lower Extremity Arterial Disease			
	was 5.2 years. (min. 2y)	 Peripheral arteriopathy (n=1) Non-Insulin-Dependent Diabetes 		Cancer mortality (n=16)	RR: 1.06 (95%Cl 0.92-1.22)
		Mellitus (n=1) -Dyslipidemia (n=1) - High-cholesterol Population (n=1)			

Some limitations (as remarked by the authors):

- The trials included in this meta-analysis were not designed to specifically analyze the relationship between fibrates and cancer risk. They have assessed cancer outcomes as secondary (safety) endpoints. Thus, problems in cancer detection and reporting may exist.

-The search was restricted to published studies and authors did not seek for unpublished/original data.

- a main issue remaining beyond control is cancer latency. As the exposure and followup times only lasted for nearly five years, estimates of cancer risk resulting from longer exposure to fibrates are not possible.

Thus, the results should be interpreted with caution.

7.2.2 Summary and conclusions: Fibrates and cancer risk

A systematic review and meta-analysis by Bonovas 2012(154) pooled 17 RCTs of 44 929 participants that compare fibrates to placebo. Average follow-up was 5 years.

No statistically significant difference in cancer incidence or cancer mortality is found. (RR: 1.02; 95%CI 0.92-1.12) and 1.06; 95%CI 0.92-1.22 respectively).

GRADE: LOW quality of evidence

7.3 Statin + ezetimibe versus statin, adverse events

7.3.1 Evidence tables

Ezetimibe +atorvastatin coadministration versus placebo + atorvastatin (4:1) in patients with primary hypercholesterolaemia

Study details	n/Population	Comparison	Outcomes		Methodological
Ballantyne_20	n= 246	EZE	Efficacy		RANDO:
04_1424 (155)		10 mg			unclear
	Of the 576 patients who completed the	+	Safety		ALLOCATION CONC:
Design:	12-week base study,246 patients were	ATV (10, 20, 40	All adverse events	EZE+ATV: 142/201 (71%)	unclear
RCT DB	randomised into the 12-month	or 80 mg,	(treatment emergent)	ATV: 30/45(67%)	BLINDING :
	extension study.	uptitrated to		NT	unclear
multinational,		target LDL)	Treatment-related	EZE+ATV: 45/201 (22%)	Remarks: no description of
extension	Inclusion		adverse events	ATV: 12/45(27%)	randomization, allocation
study	Men and women ≥18 years of age were	Vs		NT 'similar'	concealment or blinding
	screened for primary		Serious adverse events		
	hypercholesterolemia, defined as	placebo		/	FOLLOW-UP (completed 12
	calculated LDL-C7 of 145 to 250 mg/dL,	+ ATV (10,			months:
	inclusive, and triglyceride levels ≤350		Discontinuations due		83% (EZE+ATV)
	mg/dL.	uptitrated to	to adverse events	ATV: 3/45 (7%)	87% (ATV)
Duration of		target LDL)		NT 'similar'	Lost-to follow-up: Not detailed
follow-up:	Included population		Treatment-related		Drop-out and Exclusions: Not
12 month	-Mean age: 58		liver function tests ≥3·	ATV: 0	detailed
	-CHD: 12%	dietary advice to	ULN* ALT and/or AST	NT	• Described: no
	-Peripheral vascular disease: 2.5%	all patients.	CK ≥10· ULN	EZE+ATV: 0	• Balanced across groups: yes,
	-Hypertension: 42% (ATV); 34%			ATV: 0	according to authors
	(EZE+ATV)			NT	
	-Diabetes: 2% (ATV); 7% (EZE+ATV)				ITT: yes

-Smoking: 9% (ATV); 13% (EZE+ATV)	SELECTIVE REPORTING: unclear
-BMI:NR	SELECTIVE REPORTING: Unclear
Exclusion	Other important
 congestive heart failure (NYHA class III 	methodological remarks
or IV heart failure); uncontrolled	extension study: The low
cardiac arrhythmias; myocardial	enrolment into the extension
infarction, coronary bypass	study was due to
surgery, or angioplasty within 6 months	the late availability of the
of study entry; history of	extension protocol.
unstable or severe peripheral artery	
disease within 3 months of study	
entry; unstable angina pectoris; uncontrolled or newly diagnosed	Sponsor: Schering-Plough
(<1m) diabetes mellitus; unstable	Research Institute,
endocrine or metabolic diseases;	Kenilworth, NJ, and
known impairment of renal function;	Merck/Schering-Plough
active or chronic hepatic or	Pharmaceuticals,
hepatobiliary disease; known	North Wales, PA
coagulopathy.	

Ezetimibe 10 mg plus atorvastatine (uptitrated to target LDL) versus placebo plus atorvastatine				
(uptitrated to target LDL) in patients with primary hypercholesterolaemia.				
yne 2004(155)				
N° of participants	Results	Quality of the evidence		
(studies)		(GRADE)		
Follow up				
246	22% vs 27%	$\oplus \oplus \ominus \ominus$ LOW		
(1 study)	'similar'; NT	Study quality:-1 unclear		
12 m		description		
		Consistency:NA		
		Directness:-1 unknown dosage of		
		atorvastatin		
		Imprecision:NA		
246	9% vs 7%	$\oplus \oplus \ominus \ominus$ LOW		
(1 study)	'similar'; NT	Study quality:-1 unclear		
12 m		description		
12 111		Consistency:NA		
		Directness:-1 unknown dosage of		
		atorvastatin		
		Imprecision:NA		
	LDL) in patients wit yne 2004(155) N° of participants (studies) Follow up 246 (1 study) 12 m	LDL) in patients with primary hypercholesterolaeryne 2004(155)N° of participants (studies)N° of participants (studies)ResultsFollow up22% vs 27%246 (1 study)22% vs 27%12 m'similar'; NT246 (1 study)9% vs 7%(1 study)'similar'; NT		

7.3.2 Summary and conclusions. Statin + ezetimibe versus statin adverse events

This RCT is a 12 month extension of an initial 12-week trial comparing ezetimibe 10 mg + atorvastatin to atorvastatin + placebo in patients with primary hypercholesterolaemia. Atorvastatin was started at a dose of 10 mg and was uptitrated to a target LDL. We have no information on the actual mean dose that was given to the participants. The mean age of the participants was 58 years. 12% had a history of coronary heart disease.

No information on hard efficacy endpoints was provided. *GRADE: not applicable*

The number of treatment-related adverse events is 22% with the combination of ezetimibe + atorvastatin and 27% with atorvastatin monotherapy. The authors describe this as 'similar', but no statistical test was provided. GRADE: LOW quality of evidence

Discontinuation due to adverse events was 9% with combination therapy and 7 % with atorvastatin monotherapy. Again, no statistical test is provided. *GRADE: LOW quality of evidence*

8 Adverse events

8.1 Statins

- Muscle toxicity¹: dose-dependent adverse event. Myalgia occurs in 5 to 10% of patients treated, and myopathy occurs in 0.1%; this can even lead to rhabdomyolysis causing renal failure. This risk is increased when used concomitantly with certain other drugs. Hypothyroidism is a predisposing factor for rhabdomyolysis: it may be useful to evaluate thyroid function before starting statins.
- Moderate rise in transaminases, rarely hepatitis.
- Polyneuritis, peripheral neuropathy.
- Statins in high doses: increased incidence of type 2 diabetes, but this does not outweigh the benefit in people at high cardiovascular risk².
- Rarely, tendinopathy, mainly affecting the Achilles tendon, sometimes with tendon rupture³
- Pancreatitis.
- Possible interference with steroid synthesis: use during pregnancy and when breastfeeding is not recommended.
- According to one study (Prosper 2002) statins give rise to an increased risk of cancer; this has not been confirmed by other studies and meta-analyses.
- Belgian Centre for Pharmacotherapeutic Information (consulted on 08/10/2013)
- Meyler's Side Effects of Drugs: the International Encyclopedia of Adverse Drug Reactions and Interactions (Fifteenth Edition), 2006, pages 1632-1639.
- 1. Folia Farmacotherapeutica, Sept. 2011.
- 2. Folia Farmacotherapeutica, Feb. 2011.
- 3. Folia Farmacotherapeutica, Jun. 2010; La Revue Prescrire; 2010; 30:29-30.

8.2 Fibrates

- Gastrointestinal symptoms are common, mainly when starting treatment. Moderate liver disorders, rise in transaminases and rarely hepatitis. Gallstone formation, pancreatitis.
- Myalgia with raised serum creatine kinase (CK) levels, mainly when used concomitantly with a statin or in cases of renal impairment. Rhabdomyolysis is possible. Hypothyroidism is a predisposing factor for rhabdomyolysis: evaluation of thyroid function may be useful before starting fibrates.
- Venous thrombosis and pulmonary embolism.
- Artefactual rise in serum creatinine.
- Rise in homocysteine levels.
- Hypoglycaemia.
- Exanthemata, rash, photosensitivity.
- Headache, vertigo, fatigue, visual disorders, insomnia, altered taste.
- Thrombocytopenia, anaemia, leukopenia.
- Acute and chronic renal impairment.
- Peripheral neuropathy¹
- Erectile dysfunction.
 - Due to the possible interference with steroid synthesis, lipid-lowering agents should preferably not be used during pregnancy or when breastfeeding.
 - Belgian Centre for Pharmacotherapeutic Information (consulted on 08/10/2013)
 - Meyler's Side Effects of Drugs: the International Encyclopedia of Adverse Drug Reactions and Interactions (Fifteenth Edition), 2006, pages 1632-1639.

- La Revue Prescrire, December 2012/Volume 32 No. 350 (Supplément Interactions médicamenteuses), p144, p542.
- 1. La Revue Prescrire, April 2013/Volume 33, No. 354, p275.

8.3 Ezetimibe

- Headache.
- Gastrointestinal symptoms (abdominal pain, diarrhoea).
- Rise in liver enzymes.
- Myalgia and rhabdomyolysis have been reported, both when combined with a statin and when not combined with a statin.
- Hypersensitivity reactions: skin eruptions, angio-oedema.
- Arthralgia.
- Gallstones, cholecystitis, acute pancreatitis.
- Thrombocytopenia
- A carcinogenic effect is suspected and is still being investigated.
- Due to the possible interference with steroid synthesis, lipid-lowering agents should preferably not be used during pregnancy or when breastfeeding.
 - Belgian Centre for Pharmacotherapeutic Information (consulted on 08/10/2013)
 - Meyler's Side Effects of Drugs: the International Encyclopedia of Adverse Drug Reactions and Interactions (Fifteenth Edition), 2006, p 1308.
 - La Revue Prescrire, December 2012/Volume 32 No. 350 (Supplément Interactions médicamenteuses), p 146.

8.4 Anion exchangers

- Very common gastrointestinal symptoms (nausea, constipation).
- Deficiencies of fat soluble vitamins, folic acid and iron when taking high doses for long periods.
- Anaemia.
- Binding of certain drugs to the anion exchanger, e.g. digitalis glycosides, vitamin K antagonists, fibrates and statins. Separate administration is recommended in these cases.
- Due to the possible interference with steroid synthesis, lipid-lowering agents should preferably not be used during pregnancy or when breastfeeding.
- Belgian Centre for Pharmacotherapeutic Information (consulted on 08/10/2013)
- La Revue Prescrire, December 2012/Volume 32 No. 350 (Supplément Interactions médicamenteuses), p 542.

8.5 Nicotinic acid and acipimox

- Vasodilatation, hot flushes: very common. Palpitations, tachycardia, oedema
- Headache and dizziness: common.
- Itching, cutaneous eruptions when starting treatment; hyperpigmentation.
- Common gastrointestinal symptoms (diarrhoea, nausea, vomiting, anorexia). Gastroduodenal ulcer.
- Hepatotoxicity. Rise in liver enzymes, uric acid and plasma glucose: common.
- Anaphylaxis, even after the first dose: rare.
- Muscle cramps, myalgia, myopathy.
- Antabuse effect.

- Due to the possible interference with steroid synthesis, lipid-lowering agents should preferably not be used during pregnancy or when breastfeeding.
- A speciality based on the combination of nicotinic acid + laropiprant has been withdrawn from sale worldwide following a recommendation from the *Committee for Medicinal Products for Human Use* (CHMP). This recommendation was made following new data from a large study (HPS2-THRIVE, not yet published) in which the combination of nicotinic acid + laropiprant together with a statin did not result in a significant reduction in the number of major cardiovascular events as compared with a statin alone; furthermore, an increased incidence of serious non-fatal adverse events was seen in patients treated with this combination. The CHMP therefore decided that the risk-benefit ratio of the combination of nicotinic acid + laropiprant is unfavourable¹
 - Belgian Centre for Pharmacotherapeutic Information (consulted on 08/10/2013)
 - Meyler's Side Effects of Drugs: the International Encyclopedia of Adverse Drug Reactions and Interactions (Fifteenth Edition), 2006, pages 2512-2515.
 - La Revue Prescrire, December 2012/Volume 32 No. 350 (Supplément Interactions médicamenteuses), p147.
 - 1. Folia Pharmacotherapeutica March 2013

8.6 Omega 3 fatty acids

- Dyspepsia and gastrointestinal symptoms, moderate rise in liver enzymes.
- Rare: skin problems.
- Antithrombotic effect: bleeding in patients who also take platelet aggregation inhibitors.
 - Belgian Centre for Pharmacotherapeutic Information (consulted on 08/10/2013)
 - La Revue Prescrire, December 2012/Volume 32 No. 350 (Supplément Interactions médicamenteuses), p 146.

Appendix 1. Excluded publications after reading full text

Reference	Reason for exclusion
Abourbih S, Filion KB, Joseph L, Schiffrin EL, Rinfret S, Poirier P, et al. Effect of fibrates	older search date than Jun 2010
on lipid profiles and cardiovascular outcomes: a systematic review. The American	and no quality assessment
journal of medicine. 2009.	
Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin	population too specific
prescriptions and breast cancer recurrence risk: a Danish nationwide prospective	
cohort study. Journal of the National Cancer Institute. 2011.	
Alberton M, Wu P, Druyts E, Briel M, Mills EJ. Adverse events associated with individual	a more recent MTM explores
statin treatments for cardiovascular disease: an indirect comparison meta-analysis.	these comparisons
QJM : monthly journal of the Association of Physicians. 2012.	
Alexandre L, Clark AB, Cheong E, Lewis MP, Hart AR. Systematic review: potential	more recent systematic review
preventive effects of statins against oesophageal adenocarcinoma. Alimentary	included (Singh_2013)
pharmacology & therapeutics. 2012.	
Amarenco P, Goldstein LB, Sillesen H, Benavente O, Zweifler RM, Callahan A, 3rd, et al.	not original RCT. exploratory
Coronary heart disease risk in patients with stroke or transient ischemic attack and no	analysis
known coronary heart disease: findings from the Stroke Prevention by Aggressive	
Reduction in Cholesterol Levels (SPARCL) trial. Stroke; a journal of cerebral circulatio	
2010. Amarenco P, Labreuche J, Lavallee P, Touboul PJ. Statins in stroke prevention and	more recent MA available
carotid atherosclerosis: systematic review and up-to-date meta-analysis. Stroke; a	(Manktelow 2009)
journal of cerebral circulatio 2004.	(Wanklelow 2009)
Ara R, Tumur I, Pandor A, Duenas A, Williams R, Wilkinson A, et al. Ezetimibe for the	all intermediary endpoints and
treatment of hypercholesterolaemia: a systematic review and economic evaluatio	duration <1y
Health technology assessment. 2008.	
Bangalore S, Fayyad R, Laskey R, Demicco D, Deedwania P, Kostis JB, et al. Lipid	not original RCT. non-
lowering in patients with treatment-resistant hypertension: an analysis from the	prespecified analysis
Treating to New Targets (TNT) trial. European heart journal. 2013.	prespecifica analysis
Bardou M, Barkun A, Martel M. Effect of statin therapy on colorectal cancer. Gut. 2010.	design
	5
Berard E, Bongard V, Dallongeville J, Arveiler D, Ruidavets JB, Ferrieres J. Cancer	methodology: comparison
mortality according to lipid-lowering drugs and lipoproteins in a general populatio	
Current medical research and opinio 2011.	
Bettermann K, Arnold AM, Williamson J, Rapp S, Sink K, Toole JF, et al. Statins, risk of	methodological: secondary
dementia, and cognitive function: secondary analysis of the ginkgo evaluation of memory study. Journal of stroke and cerebrovascular diseases : the official journal of	analysis from RCT
National Stroke Associatio 2012.	
Boudreau DM, Yu O, Johnson J. Statin use and cancer risk: a comprehensive review.	not a sustamatic roviou
Expert opinion on drug safety. 2010.	not a systematic review
Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B. Mild to Moderate Muscular	no non-statin control group
Symptoms with High-Dosage Statin Therapy in Hyperlipidemic Patients — The PRIMO	no non-statin control group
Study. Cardiovascular Drugs and Therapy. 2005.	
Bruckert E, Labreuche J, Deplanque D, Touboul PJ, Amarenco P. Fibrates effect on	methodo search and subgroup
cardiovascular risk is greater in patients with high triglyceride levels or atherogenic	of no specific interest
dyslipidemia profile: a systematic review and meta-analysis. Journal of cardiovascular	of no specific interest
pharmacology. 2011.	
Cenedella RJ. Cholesterol and cataracts. Survey of ophthalmology. 1996.	not a cohort study
Chan DK, O'Rourke F, Shen Q, Mak JC, Hung WT. Meta-analysis of the cardiovascular	another MA adressing this
benefits of intensive lipid lowering with statins. Acta neurologica Scandinavica. 2011.	question already included. no
senents of intensive liple lowering with stating. Acta neurologica standinavita, 2011.	quality appraisal, includes also 2
	placebo-controlled trials
Chang CH, Kusama M, Ono S, Sugiyama Y, Orii T, Akazawa M. Assessment of statin-	no control group
associated muscle toxicity in Japan: a cohort study conducted using claims database	
and laboratory informatio BMJ ope 2013.	
Chodick G, Heymann AD, Flash S, Kokia E, Shalev V. Persistence with statins and	no statin-free control group
incident cataract: a population-based historical cohort study. Annals of epidemiology.	
2010.	

	1
Choi HD, Shin WG. Safety and efficacy of statin treatment alone and in combination with fibrates in patients with dyslipidemia: a meta-analysis. Current medical research	unclear search. not available in belgian libraries
and opinio 2013. Collier DJ, Poulter NR, Dahlof B, Sever PS, Wedel H, Buch J, et al. Impact of atorvastatin among older and younger patients in the Anglo-Scandinavian Cardiac Outcomes Trial Lipid-Lowering Arm. Journal of hypertensio 2011.	post hoc analysis
Cziraky MJ, Willey VJ, McKenney JM, Kamat SA, Fisher MD, Guyton JR, et al. Risk of hospitalized rhabdomyolysis associated with lipid-lowering drugs in a real-world clinical setting. Journal of clinical lipidology. 2013.	no non statin control group
Danaei G, Rodriguez LA, Cantero OF, Logan R, Hernan MA. Observational data for comparative effectiveness research: an emulation of randomised trials of statins and primary prevention of coronary heart disease. Statistical methods in medical research. 2013.	statistical method
Danaei G, Tavakkoli M, Hernan MA. Bias in observational studies of prevalent users: lessons for comparative effectiveness research from a meta-analysis of statins. American journal of epidemiology. 2012.	statistical methods
De Caterina R, Scarano M, Marfisi R, Lucisano G, Palma F, Tatasciore A, et al. Cholesterol-lowering interventions and stroke: insights from a meta-analysis of randomized controlled trials. Journal of the American College of Cardiology. 2010.	data on statins difficult to extract. this endpoint is also reported in more recent MAs
de Lorgeril M, Salen P, Abramson J, Dodin S, Hamazaki T, Kostucki W, et al. Cholesterol lowering, cardiovascular diseases, and the rosuvastatin-JUPITER controversy: a critical reappraisal. Archives of internal medicine. 2010.	comment, no RCT
Desai P, Chlebowski R, Cauley JA, Manson JE, Wu C, Martin LW, et al. Prospective analysis of association between statin use and breast cancer risk in the women's health initiative. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2013.	not available in belgian libraries
Dong YH, Lin JW, Wu LC, Chen CY, Chang CH, Chen KY, et al. Examining the association between statins and lung cancer incidence in patients with type 2 diabetes mellitus. Journal of the Formosan Medical Association = Taiwan yi zhi. 2013.	population
Fong DS, Poon KY. Recent statin use and cataract surgery. American journal of ophthalmology. 2012.	case control
Fu JH, Mok V, Lam W, Wong A, Chu W, Xiong Y, et al. Effects of statins on progression of subclinical brain infarct. Cerebrovascular diseases (Basel, Switzerland). 2010.	nonclinical endpoints
Gao Y, Cao J, Lu XC, Liu XF, Ma C, Fan L. [Comparison on the effects of clopidogrel, statins combination in treating coronary artery disease among the elderly patients: a retrospective cohort study]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2012.	language
Geng Q, Ren J, Chen H, Lee C, Liang W. Adverse events following statin-fenofibrate therapy versus statin alone: a meta-analysis of randomized controlled trials. Clinical and experimental pharmacology & physiology. 2013.	not available in belgian libraries
Geng Q, Ren J, Chen H, Lee C, Liang W. Adverse events of statin-fenofibric acid versus statin monotherapy: a meta-analysis of randomized controlled trials. Current medical research and opinio 2013.	not available in belgian libraries
Goldstein MR, Mascitelli L, Pezzetta F, Haan MN, Cramer C, Kalbfleisch J, et al. Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology. 2009.	is a comment on a cohort trial
Gray SL, Aragaki AK, LaMonte MJ, Cochrane BB, Kooperberg C, Robinson JG, et al. Statins, angiotensin-converting enzyme inhibitors, and physical performance in older wome Journal of the American Geriatrics Society. 2012.	endpoints
Greve AM, Gerdts E, Boman K, Gohlke-Baerwolf C, Rossebo AB, Nienaber CA, et al. Prognostic importance of atrial fibrillation in asymptomatic aortic stenosis: the Simvastatin and Ezetimibe in Aortic Stenosis study. International journal of cardiology. 2013.	not a research question
Guo J, Meng F, Ma N, Li C, Ding Z, Wang H, et al. Meta-analysis of safety of the coadministration of statin with fenofibrate in patients with combined hyperlipidemia. The American journal of cardiology. 2012.	inadequate search. included trials too short, too small or open label
Hackam DG, Austin PC, Huang A, Juurlink DN, Mamdani MM, Paterson JM, et al. Statins and intracerebral hemorrhage: a retrospective cohort study. Archives of neurology. 2012.	endpoint

Hamilton-Craig I, Kostner K, Colquhoun D, Woodhouse S. At sea with SEAS: the first clinical endpoint trial for ezetimibe, treatment of patients with mild to moderate aortic standards, and with mixed results and more controversy. Heart, lung & singulatio 2000	not original publication
stenosis, ends with mixed results and more controversy. Heart, lung & circulatio 2009. Hebert PR, Evans D, Schneider WR, Rodriquez-Paz E, Hennekens CH. The need for increased utilization of statins after occlusive stroke. Journal of cardiovascular pharmacology and therapeutics. 2011.	not a systematic review
Jonathan E, Derrick B, Emma L, Sarah P, John D, Jane A, et al. C-reactive protein concentration and the vascular benefits of statin therapy: an analysis of 20,536 patients in the Heart Protection Study. Lancet. 2011.	this subgroup analysis is not a research questio
Josan K, Majumdar systematic review, McAlister FA. The efficacy and safety of intensive statin therapy: a meta-analysis of randomized trials. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2008.	newer trials included in more recent MA (Mills 2011)
Joy TR, Hegele RA. Narrative review: statin-related myopathy. Annals of internal medicine. 2009.	not a systematic review
Kalavrouziotis D, Buth KJ, Cox JL, Baskett RJ. Should all patients be treated with an angiotensin-converting enzyme inhibitor after coronary artery bypass graft surgery? The impact of angiotensin-converting enzyme inhibitors, statins, and beta-blockers after coronary artery bypass graft surgery. American heart journal. 2011.	statin not focus of study
Kang S, Liu Y, Liu XB. Effects of aggressive statin therapy on patients with coronary saphenous vein bypass grafts: a systematic review and meta-analysis of randomized, controlled trials. Clinical therapeutics. 2013.	subgroup too specific
Kizer JR, Madias C, Wilner B, Vaughan CJ, Mushlin AI, Trushin P, et al. Relation of different measures of low-density lipoprotein cholesterol to risk of coronary artery disease and death in a meta-regression analysis of large-scale trials of statin therapy. The American journal of cardiology. 2010.	inadequate search dates; not a specific research question
Kostis WJ, Cheng JQ, Dobrzynski JM, Cabrera J, Kostis JB. Meta-analysis of statin effects in women versus me Journal of the American College of Cardiology. 2012.	not a subgroup of interest
Koton S, Molshatzki N, Bornstein NM, Tanne D. Low cholesterol, statins and outcomes in patients with first-ever acute ischemic stroke. Cerebrovascular diseases (Basel, Switzerland). 2012.	too small for relevant endpoint
Lai SW, Liao KF, Lin CL, Sung FC, Cheng YH. Statins use and female lung cancer risk in Taiwa The Libyan journal of medicine. 2012.	methodology
Lee M, Saver JL, Towfighi A, Chow J, Ovbiagele B. Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis. Atherosclerosis. 2011.	all trials included in Jun; subgroup of no specific interest
Li L, Ambegaonkar BM, Reckless JP, Jick S. Association of a reduction in low-density lipoprotein cholesterol with incident cardiovascular and cerebrovascular events among people with type 2 diabetes mellitus. European journal of preventive cardiology. 2013.	population
Liao YC, Hsieh YC, Hung CY, Huang JL, Lin CH, Wang KY, et al. Statin therapy reduces the risk of ventricular arrhythmias, sudden cardiac death, and mortality in heart failure patients: a nationwide population-based cohort study. International journal of cardiology. 2013.	population
Ligthart SA, Moll van Charante EP, Van Gool WA, Richard E. Treatment of cardiovascular risk factors to prevent cognitive decline and dementia: a systematic review. Vascular health and risk management. 2010.	more recent high quality systematic review available (Richardson 2013)
Lonardo A, Loria P. Potential for statins in the chemoprevention and management of hepatocellular carcinoma. Journal of gastroenterology and hepatology. 2012.	not a systematic review
Loomba RS, Arora R. Prevention of cardiovascular disease utilizing fibratesa pooled meta-analysis. American journal of therapeutics. 2010.	methodology not appropriate
Lustman A, Nakar S, Cohen AD, Vinker S. Statin use and incident prostate cancer risk: does the statin brand matter? A population-based cohort study. Prostate cancer and prostatic diseases. 2013.	not available in belgian libraries
Lutski M, Shalev V, Porath A, Chodick G. Continuation with statin therapy and the risk of primary cancer: a population-based study. Preventing chronic disease. 2012.	no statin-free control group

Ma T, Chang MH, Tien L, Liou YS, Jong GP. The long-term effect of statins on the risk of new-onset diabetes mellitus in elderly Taiwanese patients with hypertension and dyslipidaemia: a retrospective longitudinal cohort study. Drugs & aging. 2012.	not available in Belgian libraries
McCullough PA, Ahmed AB, Zughaib MT, Glanz ED, Di Loreto MJ. Treatment of hypertriglyceridemia with fibric acid derivatives: impact on lipid subfractions and translation into a reduction in cardiovascular events. Reviews in cardiovascular medicine. 2011.	not a systematic review
McGuinness B, Craig D, Bullock R, Passmore P. Statins for the prevention of dementia. The Cochrane database of systematic reviews. 2009.	more recent MA richardson 2013
McGuinness B, O'Hare J, Craig D, Bullock R, Malouf R, Passmore P. Cochrane review on 'Statins for the treatment of dementia'. International journal of geriatric psychiatry. 2013.	not a reseach population
McKinney JS, Kostis WJ. Statin therapy and the risk of intracerebral hemorrhage: a meta-analysis of 31 randomized controlled trials. Stroke; a journal of cerebral circulatio 2012.	unclear inclusion criteria (duration). combining placebo and low dose statin trials.
Meza V, Ganduglia C, Ciapponi A. Combined therapy with statins and fibrates for people with dyslipidaemia. Cochrane Database of Systematic Reviews. 2008.	protocol
Mills EJ, Wu P, Chong G, Ghement I, Singh S, Akl EA, et al. Efficacy and safety of statin treatment for cardiovascular disease: a network meta-analysis of 170,255 patients from 76 randomized trials. QJM : monthly journal of the Association of Physicians. 2011.	a more recent MTM (NACI 2013) adresses this question
Minder CM, Blaha MJ, Horne A, Michos ED, Kaul S, Blumenthal RS. Evidence-based use of statins for primary prevention of cardiovascular disease. The American journal of medicine. 2012.	not a systematic review
Mondul AM, Caffo B, Platz EA. Minimal detection bias in the inverse association between statin drug use and advanced prostate cancer risk: a simulation study. Cancer epidemiology. 2011.	desing
Mood GR, Bavry AA, Roukoz H, Bhatt DL. Meta-analysis of the role of statin therapy in reducing myocardial infarction following elective percutaneous coronary interventio The American journal of cardiology. 2007.	search question too specific, duration of included trials
Mora S, Wenger NK, Demicco DA, Breazna A, Boekholdt SM, Arsenault BJ, et al. Determinants of residual risk in secondary prevention patients treated with high- versus low-dose statin therapy: the Treating to New Targets (TNT) study. Circulatio 2012.	risk factor analysis
Moreno G, Mangione CM. Management of cardiovascular disease risk factors in older adults with type 2 diabetes mellitus: 2002-2012 literature review. Journal of the American Geriatrics Society. 2013.	inadequate search
Murphy SA, Cannon CP, Wiviott SD, McCabe CH, Braunwald E. Reduction in recurrent cardiovascular events with intensive lipid-lowering statin therapy compared with moderate lipid-lowering statin therapy after acute coronary syndromes from the PROVE IT-TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction 22) trial. Journal of the American College of Cardiology. 2009.	analysis not prespecified
Naci H, Brugts JJ, Fleurence R, Ades AE. Comparative effects of statins on major cerebrovascular events: a multiple-treatments meta-analysis of placebo-controlled and active-comparator trials. QJM : monthly journal of the Association of Physicians. 2013.	endpoint available in more recent MA. inclusion criteria differ from ours (duration > 4wks)
Naci H, Brugts JJ, Fleurence R, Tsoi B, Toor H, Ades AE. Comparative benefits of statins in the primary and secondary prevention of major coronary events and all-cause mortality: a network meta-analysis of placebo-controlled and active-comparator trials. European journal of preventive cardiology. 2013.	publication not available in belgian libraries.
Nakaya N, Mizuno K, Ohashi Y, Teramoto T, Yokoyama S, Hirahara K, et al. Low-dose pravastatin and age-related differences in risk factors for cardiovascular disease in hypercholesterolaemic Japanese: analysis of the management of elevated cholesterol in the primary prevention group of adult Japanese (MEGA study). Drugs & aging. 2011.	not prespecified analysis
Navarese EP, Buffon A, Andreotti F, Kozinski M, Welton N, Fabiszak T, et al. Meta- analysis of impact of different types and doses of statins on new-onset diabetes mellitus. The American journal of cardiology. 2013.	another MTM already included (Naci 2013)

Neumann A, Maura G, Weill A, Ricordeau P, Alla F, Allemand H. Comparative effectiveness of rosuvastatin versus simvastatin in primary prevention among new users: a cohort study in the French national health insurance database. Pharmacoepidemiology and drug safety. 2013.	not a comparison of interest for observational studies
Ni Chroinin D, Asplund K, Asberg S, Callaly E, Cuadrado-Godia E, Diez-Tejedor E, et al. Statin therapy and outcome after ischemic stroke: systematic review and meta-analysis of observational studies and randomized trials. Stroke; a journal of cerebral circulatio 2013.	intervention
Oliver MF. Cholesterol-lowering and cancer in the prevention of cardiovascular disease. QJM : monthly journal of the Association of Physicians. 2010.	design
O'Regan C, Wu P, Arora P, Perri D, Mills EJ. Statin therapy in stroke prevention: a meta- analysis involving 121,000 patients. The American journal of medicine. 2008.	more recent MA included (manktelow 2009)
Palnum KH, Mehnert F, Andersen G, Ingeman A, Krog BR, Bartels PD, et al. Medical prophylaxis following hospitalization for ischemic stroke: age- and sex-related differences and relation to mortality. Cerebrovascular diseases (Basel, Switzerland). 2010.	endpoints of interest not extractable
Petersen LK, Christensen K, Kragstrup J. Lipid-lowering treatment to the end? A review of observational studies and RCTs on cholesterol and mortality in 80+-year olds. Age and ageing. 2010.	not a systematic review
Peto R, Emberson J, Landray M, Baigent C, Collins R, Clare R, et al. Analyses of cancer data from three ezetimibe trials. The New England journal of medicine. 2008.	no systematic search
Pradelli D, Soranna D, Scotti L, Zambon A, Catapano A, Mancia G, et al. Statins and primary liver cancer: a meta-analysis of observational studies. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). 2013.	not an adequate systematic search
Preiss D, Sattar Statins and the risk of new-onset diabetes: a review of recent evidence. Current opinion in lipidology. 2011.	not a systematic review
Quin JA, Hattler B, Bishawi M, Baltz J, Gupta S, Collins JF, et al. Impact of lipid-lowering medications and low-density lipoprotein levels on 1-year clinical outcomes after coronary artery bypass grafting. Journal of the American College of Surgeons. 2013.	post hoc analysis
Rahimi K, Majoni W, Merhi A, Emberson J. Effect of statins on ventricular tachyarrhythmia, cardiac arrest, and sudden cardiac death: a meta-analysis of published and unpublished evidence from randomized trials. European heart journal. 2012.	not a specific research questio mortality endpoints available in more recent meta-analyses
Ribeiro RA, Ziegelmann PK, Duncan BB, Stella SF, da Costa Vieira JL, Restelatto LM, et al. Impact of statin dose on major cardiovascular events: a mixed treatment comparison meta-analysis involving more than 175,000 patients. International journal of cardiology. 2013.	direct comparison MA available with more recent search date
Rojas-Fernandez CH, Cameron JC. Is statin-associated cognitive impairment clinically relevant? A narrative review and clinical recommendations. The Annals of pharmacotherapy. 2012.	not available in belgian libraries. more recent MA available
Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. The New England journal of medicine. 2008.	not a comparison of interest (eze+simva vs placebo)
Sano K, Nakamura T, Hirano M, Kitta Y, Kobayashi T, Fujioka D, et al. Comparative study of bezafibrate and pravastatin in patients with coronary artery disease and high levels of remnant lipoprotei Circulation journal : official journal of the Japanese Circulation Society. 2010.	design: open label
Schiattarella GG, Perrino C, Magliulo F, Ilardi F, Serino F, Trimarco V, et al. Statins and the elderly: recent evidence and current indications. Aging clinical and experimental research. 2012.	not a systematic review
Schwartz GG, Chaitman BR, Goldberger JJ, Messig M. High-dose atorvastatin and risk of atrial fibrillation in patients with prior stroke or transient ischemic attack: analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. American heart journal. 2011.	post hoc endpoint, not a research question

Sharma M, Ansari MT, Abou-Setta AM, Soares-Weiser K, Ooi TC, Sears M, et al. Systematic review: comparative effectiveness and harms of combination therapy and monotherapy for dyslipidemia. Annals of internal medicine. 2009.	this systematic review already included
Shimoyama S. Statins and gastric cancer risk. Hepato-gastroenterology. 2011.	not an adequate systematic search
Shinozaki T, Matsuyama Y, limuro S, Umegaki H, Sakurai T, Araki A, et al. Effective prevention of cardiovascular disease and diabetes-related events with atorvastatin in Japanese elderly patients with type 2 diabetes mellitus: adjusting for treatment changes using a marginal structural proportional hazards model and a rank-preserving structural failure time model. Geriatrics & gerontology international. 2012.	analyses as cohort study, randimisation not preserved
Sillesen H, Amarenco P, Hennerici MG, Callahan A, Goldstein LB, Zivin J, et al. Atorvastatin reduces the risk of cardiovascular events in patients with carotid atherosclerosis: a secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke; a journal of cerebral circulatio 2008.	original trial included in different MA. this subgroup not of specific interest
Song Y, Nie H, Xu Y, Zhang L, Wu Y. Association of statin use with risk of dementia: a meta-analysis of prospective cohort studies. Geriatrics & gerontology international. 2013.	more recent MA Richardson 2013
Suh HS, Hay JW, Johnson KA, Doctor J Comparative effectiveness of statin plus fibrate combination therapy and statin monotherapy in patients with type 2 diabetes: use of propensity-score and instrumental variable methods to adjust for treatment-selection bias. Pharmacoepidemiology and drug safety. 2012.	not a reseach population
Swiger KJ, Manalac RJ, Blumenthal RS, Blaha MJ, Martin SS. Statins and cognition: a systematic review and meta-analysis of short- and long-term cognitive effects. Mayo Clinic proceedings Mayo Clinic. 2013.	very good methodology but Richardson 2013 has GRADE assessment.
Tan M, Song X, Zhang G, Peng A, Li X, Li M, et al. Statins and the risk of lung cancer: a meta-analysis. PloS one. 2013.	not an adequate systematic search
Tan N, Klein EA, Li J, Moussa AS, Jones JS. Statin use and risk of prostate cancer in a population of men who underwent biopsy. The Journal of urology. 2011.	methodology and population
Taylor F, Ward K, Moore TH, Burke M, Davey Smith G, Casas JP, et al. Statins for the primary prevention of cardiovascular disease. The Cochrane database of systematic reviews. 2011.	more recent version available
Thomas JE, Tershakovec AM, Jones-Burton C, Sayeed RA, Foody JM. Lipid lowering for secondary prevention of cardiovascular disease in older adults. Drugs & aging. 2010.	not a systematic review
Tsunoda R, Sakamoto T, Kojima S, Ogata Y, Kitagwa A, Ogawa H. Recurrence of angina pectoris after percutaneous coronary intervention is reduced by statins in Japanese patients. Journal of cardiology. 2011.	open label design
Wang J, Li C, Tao H, Cheng Y, Han L, Li X, et al. Statin use and risk of lung cancer: a meta-analysis of observational studies and randomized controlled trials. PloS one. 2013.	more recent MA available (Deng_2013)
Waters DD, Ho JE, Boekholdt SM, DeMicco DA, Kastelein JJ, Messig M, et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. Journal of the American College of Cardiology. 2013.	analysis not prespecified
Waters DD, Ho JE, DeMicco DA, Breazna A, Arsenault BJ, Wun CC, et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. Journal of the American College of Cardiology. 2011.	no systematic search
Weng TC, Yang YH, Lin SJ, Tai SH. A systematic review and meta-analysis on the therapeutic equivalence of statins. Journal of clinical pharmacy and therapeutics. 2010.	intermediary endpoints. insufficient data on hard endpoints
Wilt TJ, Bloomfield HE, MacDonald R, Nelson D, Rutks I, Ho M, et al. Effectiveness of statin therapy in adults with coronary heart disease. Archives of internal medicine. 2004.	more recent MA available.
Wong WB, Lin VW, Boudreau D, Devine EB. Statins in the prevention of dementia and Alzheimer's disease: a meta-analysis of observational studies and an assessment of confounding. Pharmacoepidemiology and drug safety. 2013.	better methodology Richardson 2013
Yan YL, Qiu B, Hu LJ, Jing XD, Liu YJ, Deng SB, et al. Efficacy and safety evaluation of intensive statin therapy in older patients with coronary heart disease: a systematic	combines statin high dose vs pla and high dose vs low dose.

review and meta-analysis. European journal of clinical pharmacology. 2013.	statistical methods not ideal
Zhang Y, Zang T. Association between statin usage and prostate cancer prevention: a refined meta-analysis based on literature from the years 2005-2010. Urologia internationalis. 2013.	methodology
Zhang ZJ, Cheng Q, Jiang GX, Marroquin OC. Statins in prevention of repeat revascularization after percutaneous coronary interventiona meta-analysis of randomized clinical trials. Pharmacological research : the official journal of the Italian Pharmacological Society. 2010.	design (duration included trials)
Zhou YH, Ye XF, Yu FF, Zhang X, Qin YY, Lu J, et al. Lipid management in the prevention of stroke: a meta-analysis of fibrates for stroke preventio BMC neurology. 2013.	meta-analysis included with more endpoints (Jun 2010). no new trials added.

Appendix 2. Some results from individual RCTs

As an illustration of how baseline risk influences absolute risk reduction and NNT, we have added individual results from some of the trials that are included in different meta-analyses. They are roughly arranged from lower risk to higher risk.

Ref	n	Population	Duration	Compariso n	Outcomes	Results
AFCAPS/TexCAPS 1998(6) Remarks: Trial was stopped prematurely. To be terminated when 320 participants had experienced primary outcome event. Stopped when 267 had done at 5.2 years	6606	participants in Texas, USA; "Average" TC and LDL-C levels and below-average HDL-C levels TC, [180-264mg/dL];LDL-C, [130-190 mg/dL]; HDL-C,≤ [45mg/dL]for men or ≤ [47 mg/dL] for women; and triglycerides, ≤ [400 mg/dL] mean age 58; None with any clinical evidence of CVD 22% hypertension 13% current smoker 3.5% diabetes	mean 5.2y Remarks: Trial was stopped prematurely. To be terminated when 320 participants had experienced primary outcome event. Stopped when 267 had done at 5.2 years	20-40mg lovastatin vs placebo	Acute major coronary events defined as fatal or nonfatal myocardial infarction, unstable angina, or sudden cardiac death (primary endpoint) MI (fatal and nonfatal)	3.5% vs 5.5% at a mean of 5.2y rate: 0.68/100py vs 1.09/100py RR 0.63 (95%CI 0.50-0.79); SS NNT for a mean of 5.2 years : 49 (based on crude rates) NNT per personyear: 244 (based on rate/100py) 1.7% vs 2.9% at a mean of 5.2y rate: 0.33/100py vs 0.56/100py RR 0.60 (95%CI 0.43-0.83); SS NNT for a mean of 5.2 years: 84 (based on crude rates) NNT per personyear: 434 (based on rate/100py)
					Fatal cardiovascular events	0.10/100py vs 0.14/100py NT
					Total mortality	0.46/100py vs 0.44/100py NT 'similar'

WOSCOPS(26)	6595	men with hypercholesterolaemia	mean 4.9y	40 mg pravastatin	Nonfatal MI or death from CHD (primary endpoint)	· · · · · · · · · · · · · · · · · · ·
		(LDL-C≥ 155 mg/dl) based in Scotland		vs placebo		RRR 31(95%Cl 17 to 43); SS
		mean age 55				NNT for 5 years: 42
		(44% current smoker)			Fatal or nonfatal stroke	1.6% vs 1.6% at 5 years
		< 10% with clinical evidence				RRR 11(-33 to 40)
		<u>of CVD</u>				NS
					Death from all cardiovascular	1.6% vs 2.3% at 5 years
					causes	
						RRR= 32(95%Cl 3 to 53)
						NNT for 5 years = 143
					Death from any cause	3.2% at 5 years vs 4.1% at 5 years
						RRR: 22(0 to 40)
						p=0.051; NS

JUPITER 2008(19)	17802	LDL-C<130 mg/dl hs-CRP ≥2.0 mg/l	median 1.9y	20 mg rosuvastatin	Myocardial infarction, stroke, arterial revascularization,	1.60% vs 2.82% at a median of 1.9y rate: 0.77/100py vs 1.36/100py
		>50 years None with any clinical evidence of CVD		vs placebo	hospitalization for unstable angina, or death from cardiovascular causes (primary endpoint)	HR: 0.56 (95%Cl 0.46 to 0.69); SS NNT for 2 years: 95 (On the basis of Kaplan–Meier estimates)
					Any myocardial infarction	0.35% vs 0.76% at a median of 1.9y rate 0.17/100 py vs 0.37 /100 py HR: 0.46 (95%Cl 0.30 to 0.70); SS
						NNT for a median of 1.9y: 241 (based on crude rades) NNT per personyear : 500 (based on rate/100py)
			Remarks: Stopped early with a follow-up		Myocardial infarction, stroke, or confirmed death from cardiovascular causes	0.93% vs 1.76% at a median of 1.9y rate 0.45/100py vs 0.85/100py HR= 0.53 (95% Cl 0.40 to 0.69)
			of 1.9 years. Primary endpoint event			NNT for a median of 1.9y: 120 (based on crude rates) NNT per personyear: 250 (based on rate/100py)
			rate higher than predicted.		Any stroke	0.37% vs 0.72% at a median of 1.9y rate: 0.18/100py vs 0.34/100py HR: 0.52 (95%Cl 0.34-0.79); SS
						NNT for a median of 1.9y: 287 (based on crude rates) NNT per personyear: 625 (based on rate/100py)
					Any death	2.22% vs 2.77% at a median of 1.9y rate: 1.00/100py vs 1.25/100py HR: 0.80 (95% Cl 0.67-0.97); SS
						NNT for a median of 1.9y= 182 (based on crude rates) NNT per personyear: 400 (based on rate/100py)

ASCOT-LLA	10305	Hypertensive patients	median of 3.3	10 mg	Non-fatal MI* plus fatal CHD	1.9% vs 3.0% at a median of 3.3 years
2003(10)		(aged 40–79 years) with	У	atorvastatin	(primary endpoint)	rate 0.60/100py vs 0.94/100py
		at least three other		vs placebo		
		cardiovascular risk				HR 0.64(95%Cl 0.50 to 0.83); SS
		factors*				
		with non-fasting total				NNT for a median of 3.3 years: 90
		cholesterol				(based on crude rates)
		concentrations 6.5				NNT per personyear: 294
		mmol/L or less				(based on rate/100 py)
					Fatal and nonfatal stroke	1.7% vs 2.4% at a median of 3.3 years
		10% previous stroke or				rate 0.54/100py vs 0.74/100py
		TIA				
		5% peripheral vascular				HR 0.73(95%Cl 0.56-0.96); SS
		disease				
						NNT for a median of 3.3y: 143
		*left-ventricular hypertrophy, other specified abnormalities on electrocardiogram, type 2				(based on crude rates)
						NNT per personyear: 500
						(based on rate/100py)
		diabetes, peripheral arterial			Cardiovascular mortality	1.4% vs 1.6% at a median of 3.3 years
		disease, previous stroke or				rate 0.44/100py vs 0.49/100py
		transient ischaemic attack, male sex, age 55 years or older,				
		microalbuminuria or				HR 0.90 (95%CI 0.66-1.23)
		proteinuria, smoking, ratio of				NS
		plasma total cholesterol to			All-cause mortality	3.6% vs 4.1% at a median of 3.3y
		HDL-cholesterol of 6 or higher, or premature family history of				rate 1.11/100py vs 1.28/100py
		CHD.				
						HR 0.87 (95%Cl 0.71 – 1.06)
						NS

PROSPER 2002(24)	5804	Elderly patients with a history of, or risk factors for, vascular disease (Raised risk of CV disease because of smoking, HTN, or DM)	mean 3.2y	40 mg pravastatin vs placebo	Coronary death, non-fatal myocardial infarction, and fatal or non-fatal stroke (Primary endpoint)	all patients 14.1% vs 16.2% at a mean of 3.2y HR= 0.85 (95% Cl 0.74–0.97); SS NNT for a mean of 3.2y =48 (based on crude rates)
		70-82y				subgroup previous vascular disease 17.4% vs 21.7% at a mean of 3.2y HR 0.78(95%Cl 0.66-0.93); SS
						NNT for a mean of 3.2y =23 (based on crude rates)
						subgroup no previous vascular disease 11.4% vs 12.1% at a mean of 3.2y HR= 0.94(95%Cl 0.77-1.15) NS
					Coronary heart disease death or non-fatal myocardial infarction	10.1 % vs 12.2% at a mean of 3.2y HR= 0.81 (95%Cl 0.69-0.94); SS
						NNT for a mean of 3.2y =48 (based on crude rates)
					Fatal or non-fatal stroke	4.7% vs 4.5% at a mean of 3.2y HR 1.03 (95%CI 0.81-1.31) NS
					Vascular death	4.7% vs 5.4% at a mean of 3.2y HR 0.85 (95%CI 0.67-1.07) NS
					All cause death	10.3% vs 10.5% at a mean of 3.2y HR 0.97 (95%CI 0.83-1.14) NS

SSSS 1994(25)	4444	Patients with angina	median 5.4y	20 mg	major coronary events:	19% vs 28% at a median of 5.4y
		pectoris or previous		simvastatin	coronary death nonfatal	
		myocardial infarction and		vs placebo	definite or probable MI, silent	RR 0.66 (95%CI 0.59-0.75); SS
		serum cholesterol 5.5-8.0			MI, or resuscitated cardiac	
		mmol/L on a lipid-lowering			arrest(secondary endpoint)	NNT for a median of 5.4y: 11
		diet				(based on crude rates)
					All cardiovascular death	6.1% vs 9.3% at a median of 5.4y
		(= 212mg/dl to 308mg/dl)			(secondary endpoint)	
		age 35-70y				RR 0.62(95%Cl 0.52-0.80); SS
		26% hypertension				NNT for a median of 5.4y: 31
		25% smokers				(based on crude rates)
					All death (primary endpoint)	8.2% vs 11.5% at a median of 5.4y
						RR 0.70 (95% CI 0.58-0.85); SS
						NNT for a median of 5.4y: 30 (based on crude rates)

LIPID 9014 1998(60)	9014	The patients had a history of myocardial infarction or hospitalization for unstable angina and initial plasma total cholesterol levels of	mean 6.1y	40mg pravastatin vs placebo	Death due to CHD or nonfatal MI	12.3% vs 15.9% at a mean of 6.1y RRR 24 (95%Cl 15-32) NNT for a mean of 6.1y: 28 (based on crude rates)
		155 to 271 mg per deciliter			Any MI	7.4% vs 10.3% at a mean of 6.1y RRR 29(95%CI 18-38); SS
						NNT for a mean of 6.1y: 34 (based on crude rates)
					Any stroke	3.7% vs 4.5% at a mean of 6.1y RRR 19 (95%CI 0-34), p=0.048
						NNT for a mean of 6.1y: 125
					Death due to seven my board	(based on crude rates)
					Death due to coronary heart	6.4% vs 8.3% at a mean of 6.1y
					disease (primary endpoint)	RRR 24 (95%Cl 12-35); SS
						NNT for a mean of 6.1y:53
						(based on crude rates)
					Death due to cardiovascular	7.3% vs 9.6% at a mean of 6.1y
					disease	RRR 25(95%CI 13-35); SS
						NNT for a mean of 6.1y: 43 (based on crude rates)
					Death from one of the	,
					Death from any cause	11.0% vs 14.1% at a mean of 6.1y RRR 22(95%Cl 13-31); SS
						NNT for a mean of 6.1y: 32 (based on crude rates)

References

1. Willenheimer R. Statistical significance versus clinical relevance in cardiovascular medicine. Progress in cardiovascular diseases. 2001;44(3):155-67.

2. Chevalier P. Relevantie van wetenschappelijke gegevens voor de klinische praktijk. Minerva 2009;8(2):24.

3. Marx A, Bucher HC. Numbers needed to treat derived from meta-analysis: a word of caution. ACP journal club. 2003;138(2):A11-2.

4. Cholesterol Treatment Trialists C, Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581-90.

5. Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. The New England journal of medicine. 2005;353(3):238-48.

6. Downs JR, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA : the journal of the American Medical Association. 1998;279(20):1615-22.

7. Holdaas H, Fellstrom B, Jardine AG, Holme I, Nyberg G, Fauchald P, et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003;361(9374):2024-31.

8. The Allhat officers and coordinators for the ALLHAT collaborative research group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA : the journal of the American Medical Association. 2002;288(23):2998-3007.

9. Koren MJ, Hunninghake DB. Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid-lowering disease management clinics: the alliance study. Journal of the American College of Cardiology. 2004;44(9):1772-9.

10. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361(9364):1149-58.

11. Knopp RH, d'Emden M, Smilde JG, Pocock SJ. Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulin-dependent diabetes mellitus (ASPEN). Diabetes care. 2006;29(7):1478-85.

12. Fellstrom BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. The New England journal of medicine. 2009;360(14):1395-407.

13. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685-96.

14. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol

levels. Cholesterol and Recurrent Events Trial investigators. The New England journal of medicine. 1996;335(14):1001-9.

 Kjekshus J, Apetrei E, Barrios V, Bohm M, Cleland JG, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. The New England journal of medicine. 2007;357(22):2248-61.
 Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of

rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1231-9.

17. GISSI Prevenzione Investigators. Results of the low-dose (20 mg) pravastatin GISSI Prevenzione trial in 4271 patients with recent myocardial infarction: do stopped trials contribute to overall knowledge? GISSI Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico). Italian heart journal : official journal of the Italian Federation of Cardiology. 2000;1(12):810-20.

18. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7-22.

19. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr., Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. The New England journal of medicine. 2008;359(21):2195-207.

20. LIPID study group. Long-term effectiveness and safety of pravastatin in 9014 patients with coronary heart disease and average cholesterol concentrations: the LIPID trial follow-up. Lancet. 2002;359(9315):1379-87.

21. Serruys PW, de Feyter P, Macaya C, Kokott N, Puel J, Vrolix M, et al. Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA : the journal of the American Medical Association. 2002;287(24):3215-22.

22. Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet. 2006;368(9542):1155-63.

23. Post Coronary Artery Bypass Graft Trial Investigators. The effect of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts. The New England journal of medicine. 1997;336(3):153-62.

24. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360(9346):1623-30.

25. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934):1383-9.

26. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. The New England journal of medicine. 1995;333(20):1301-7.

27. de Lemos JA, Blazing MA, Wiviott SD, Lewis EF, Fox KA, White HD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA : the journal of the American Medical Association. 2004;292(11):1307-16.

28. Pedersen TR, Faergeman O, Kastelein JJ, Olsson AG, Tikkanen MJ, Holme I, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA : the journal of the American Medical Association. 2005;294(19):2437-45.

29. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. The New England journal of medicine. 2004;350(15):1495-504.

30. Armitage J, Bowman L, Wallendszus K, Bulbulia R, Rahimi K, Haynes R, et al. Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet. 2010;376(9753):1658-69.

31. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. The New England journal of medicine. 2005;352(14):1425-35.

32. Taylor F, Huffman Mark D, Macedo Ana F, Moore Theresa HM, Burke M, Davey Smith G, et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews. 2013(1).

33. Furberg CD, Adams HP, Jr., Applegate WB, Byington RP, Espeland MA, Hartwell T, et al. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation. 1994;90(4):1679-87.

34. Bone HG, Kiel DP, Lindsay RS, Lewiecki EM, Bolognese MA, Leary ET, et al. Effects of atorvastatin on bone in postmenopausal women with dyslipidemia: a double-blind, placebo-controlled, dose-ranging trial. The Journal of clinical endocrinology and metabolism. 2007;92(12):4671-7.

35. Mercuri M, Bond MG, Sirtori CR, Veglia F, Crepaldi G, Feruglio FS, et al. Pravastatin reduces carotid intima-media thickness progression in an asymptomatic hypercholesterolemic mediterranean population: the Carotid Atherosclerosis Italian Ultrasound Study. The American journal of medicine. 1996;101(6):627-34.

36. Lindholm LH, Ekbom T, Dash C, Isacsson A, Schersten B. Changes in cardiovascular risk factors by combined pharmacological and nonpharmacological strategies: the main results of the CELL Study. Journal of internal medicine. 1996;240(1):13-22.

37. Beishuizen ED, van de Ree MA, Jukema JW, Tamsma JT, van der Vijver JC, Meinders AE, et al. Two-year statin therapy does not alter the progression of intima-media thickness in patients with type 2 diabetes without manifest cardiovascular disease. Diabetes care. 2004;27(12):2887-92.

38. Derosa G, Mugellini A, Ciccarelli L, Fogari R. Randomized, double-blind, placebo-controlled comparison of the action of orlistat, fluvastatin, or both an anthropometric measurements, blood pressure, and lipid profile in obese patients with hypercholesterolemia prescribed a standardized diet. Clinical therapeutics. 2003;25(4):1107-22.

39. Anderssen SA, Hjelstuen AK, Hjermann I, Bjerkan K, Holme I. Fluvastatin and lifestyle modification for reduction of carotid intima-media thickness and left ventricular mass progression in drug-treated hypertensives. Atherosclerosis. 2005;178(2):387-97.

40. Salonen R, Nyyssonen K, Porkkala E, Rummukainen J, Belder R, Park JS, et al. Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation. 1995;92(7):1758-64.

41. Crouse JR, 3rd, Raichlen JS, Riley WA, Evans GW, Palmer MK, O'Leary DH, et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA : the journal of the American Medical Association. 2007;297(12):1344-53.

42. Heart Protection Study Collaborative Group. Randomized trial of the effects of cholesterollowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. Journal of vascular surgery. 2007;45(4):645-54; discussion 53-4.

43. Zanchetti A, Crepaldi G, Bond MG, Gallus G, Veglia F, Mancia G, et al. Different effects of antihypertensive regimens based on fosinopril or hydrochlorothiazide with or without lipid lowering by pravastatin on progression of asymptomatic carotid atherosclerosis: principal results of PHYLLIS--a randomized double-blind trial. Stroke; a journal of cerebral circulation. 2004;35(12):2807-12.

44. Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA, et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004;110(18):2809-16.

45. Brugts JJ, Yetgin T, Hoeks SE, Gotto AM, Shepherd J, Westendorp RG, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. Bmj. 2009;338(1):b2376.

46. Tonelli M, Lloyd A, Clement F, Conly J, Husereau D, Hemmelgarn B, et al. Efficacy of statins for primary prevention in people at low cardiovascular risk: a meta-analysis. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne. 2011;183(16):E1189-202.

47. Ray KK, Seshasai SR, Erqou S, Sever P, Jukema JW, Ford I, et al. Statins and all-cause mortality in high-risk primary prevention: a meta-analysis of 11 randomized controlled trials involving 65,229 participants. Archives of internal medicine. 2010;170(12):1024-31.

48. Manktelow Bradley N, Potter John F. Interventions in the management of serum lipids for preventing stroke recurrence. Cochrane Database of Systematic Reviews. 2009(3).

49. Acheson J, Hutchinson EC. Controlled trial of clofibrate in cerebral vascular disease. Atherosclerosis. 1972;15(2):177-83.

50. Plehn JF, Davis BR, Sacks FM, Rouleau JL, Pfeffer MA, Bernstein V, et al. Reduction of stroke incidence after myocardial infarction with pravastatin: the Cholesterol and Recurrent Events (CARE) study. The Care Investigators. Circulation. 1999;99(2):216-23.

51. Kennedy J, Hill MD, Ryckborst KJ, Eliasziw M, Demchuk AM, Buchan AM. Fast assessment of stroke and transient ischaemic attack to prevent early recurrence (FASTER): a randomised controlled pilot trial. Lancet neurology. 2007;6(11):961-9.

52. Collins R, Armitage J, Parish S, Sleight P, Peto R. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363(9411):757-67.

53. White HD, Simes RJ, Anderson NE, Hankey GJ, Watson JD, Hunt D, et al. Pravastatin therapy and the risk of stroke. The New England journal of medicine. 2000;343(5):317-26.

54. Amarenco P, Bogousslavsky J, Callahan A, 3rd, Goldstein LB, Hennerici M, Rudolph AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. The New England journal of medicine. 2006;355(6):549-59.

55. The Veterans administration cooperative study group. The treatment of cerebrovascular disease with clofibrate. Final report of the Veterans Administration Cooperative Study of Atherosclerosis, Neurology Section. Stroke; a journal of cerebral circulation. 1973;4(4):684-93.

56. Ward S, Lloyd Jones M, Pandor A, Holmes M, Ara R, Ryan A, et al. A systematic review and economic evaluation of statins for the prevention of coronary events. Health technology assessment. 2007;11(14):1-160, iii-iv.

57. Riegger G, Abletshauser C, Ludwig M, Schwandt P, Widimsky J, Weidinger G, et al. The effect of fluvastatin on cardiac events in patients with symptomatic coronary artery disease during one year of treatment. Atherosclerosis. 1999;144(1):263-70.

58. Serruys PW, Foley DP, Jackson G, Bonnier H, Macaya C, Vrolix M, et al. A randomized placebo-controlled trial of fluvastatin for prevention of restenosis after successful coronary balloon angioplasty; final results of the fluvastatin angiographic restenosis (FLARE) trial. European heart journal. 1999;20(1):58-69.

59. Liem AH, van Boven AJ, Veeger NJ, Withagen AJ, Robles de Medina RM, Tijssen JG, et al. Effect of fluvastatin on ischaemia following acute myocardial infarction: a randomized trial. European heart journal. 2002;23(24):1931-7.

60. The long-term intervention with pravastatin in ischaemic disease (LIPID) study group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. The New England journal of medicine. 1998;339(19):1349-57.

61. Pitt B, Mancini GB, Ellis SG, Rosman HS, Park JS, McGovern ME. Pravastatin limitation of atherosclerosis in the coronary arteries (PLAC I): reduction in atherosclerosis progression and clinical events. PLAC I investigation. Journal of the American College of Cardiology. 1995;26(5):1133-9.

62. Crouse JR, 3rd, Byington RP, Bond MG, Espeland MA, Craven TE, Sprinkle JW, et al. Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). The American journal of cardiology. 1995;75(7):455-9.

63. Bertrand ME, McFadden EP, Fruchart JC, Van Belle E, Commeau P, Grollier G, et al. Effect of pravastatin on angiographic restenosis after coronary balloon angioplasty. The PREDICT Trial Investigators. Prevention of Restenosis by Elisor after Transluminal Coronary Angioplasty. Journal of the American College of Cardiology. 1997;30(4):863-9.

64. Jukema JW, Bruschke AV, van Boven AJ, Reiber JH, Bal ET, Zwinderman AH, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation. 1995;91(10):2528-40.

65. MAAS investigators. Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS). Lancet. 1994;344(8923):633-8.

66. Bestehorn HP, Rensing UF, Roskamm H, Betz P, Benesch L, Schemeitat K, et al. The effect of simvastatin on progression of coronary artery disease. The Multicenter coronary Intervention Study (CIS). European heart journal. 1997;18(2):226-34.

67. Savarese G, Gotto AM, Jr., Paolillo S, D'Amore C, Losco T, Musella F, et al. Benefits of statins in elderly subjects without established cardiovascular disease: a meta-analysis. Journal of the American College of Cardiology. 2013;62(22):2090-9.

68. Collier DJ, Poulter NR, Dahlof B, Sever PS, Wedel H, Buch J, et al. Impact of atorvastatin among older and younger patients in the Anglo-Scandinavian Cardiac Outcomes Trial Lipid-Lowering Arm. Journal of hypertension. 2011;29(3):592-9.

69. Bruckert E, Lievre M, Giral P, Crepaldi G, Masana L, Vrolix M, et al. Short-term efficacy and safety of extended-release fluvastatin in a large cohort of elderly patients. The American journal of geriatric cardiology. 2003;12(4):225-31.

70. Neil HA, DeMicco DA, Luo D, Betteridge DJ, Colhoun HM, Durrington PN, et al. Analysis of efficacy and safety in patients aged 65-75 years at randomization: Collaborative Atorvastatin Diabetes Study (CARDS). Diabetes care. 2006;29(11):2378-84.

71. Glynn RJ, Koenig W, Nordestgaard BG, Shepherd J, Ridker PM. Rosuvastatin for primary prevention in older persons with elevated C-reactive protein and low to average low-density lipoprotein cholesterol levels: exploratory analysis of a randomized trial. Annals of internal medicine. 2010;152(8):488-96, w174.

72. Nakaya N, Mizuno K, Ohashi Y, Teramoto T, Yokoyama S, Hirahara K, et al. Low-dose pravastatin and age-related differences in risk factors for cardiovascular disease in hypercholesterolaemic Japanese: analysis of the management of elevated cholesterol in the primary prevention group of adult Japanese (MEGA study). Drugs & aging. 2011;28(9):681-92.

73. Afilalo J, Duque G, Steele R, Jukema JW, de Craen AJ, Eisenberg MJ. Statins for secondary prevention in elderly patients: a hierarchical bayesian meta-analysis. Journal of the American College of Cardiology. 2008;51(1):37-45.

74. Miettinen TA, Pyorala K, Olsson AG, Musliner TA, Cook TJ, Faergeman O, et al. Cholesterollowering therapy in women and elderly patients with myocardial infarction or angina pectoris: findings from the Scandinavian Simvastatin Survival Study (4S). Circulation. 1997;96(12):4211-8.

75. Lewis SJ, Moye LA, Sacks FM, Johnstone DE, Timmis G, Mitchell J, et al. Effect of pravastatin on cardiovascular events in older patients with myocardial infarction and cholesterol levels in the average range. Results of the Cholesterol and Recurrent Events (CARE) trial. Annals of internal medicine. 1998;129(9):681-9.

76. Hunt D, Young P, Simes J, Hague W, Mann S, Owensby D, et al. Benefits of pravastatin on cardiovascular events and mortality in older patients with coronary heart disease are equal to or exceed those seen in younger patients: Results from the LIPID trial. Annals of internal medicine. 2001;134(10):931-40.

77. Allonen J, Nieminen MS, Lokki M, Parkkonen O, Vaara S, Perola M, et al. Mortality rate increases steeply with nonadherence to statin therapy in patients with acute coronary syndrome. Clinical cardiology. 2012;35(11):E22-7.

78. Eindhoven JA, Onuma Y, Oemrawsingh RM, Daemen J, van Nierop JW, de Jaegere PP, et al. Long-term outcome after statin treatment in routine clinical practice: results from a prospective PCI cohort study. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2012;7(12):1420-7.

79. Makihara N, Kamouchi M, Hata J, Matsuo R, Ago T, Kuroda J, et al. Statins and the risks of stroke recurrence and death after ischemic stroke: the Fukuoka Stroke Registry. Atherosclerosis. 2013;231(2):211-5.

80. Palnum KH, Mehnert F, Andersen G, Ingeman A, Krog BR, Bartels PD, et al. Use of secondary medical prophylaxis and clinical outcome among patients with ischemic stroke: a nationwide follow-up study. Stroke; a journal of cerebral circulation. 2012;43(3):802-7.

81. Cantu-Brito C, Chiquete E, Ruiz-Sandoval JL, Gaxiola E, Albuquerque DC, Corbalan R, et al. Atherothrombotic disease, traditional risk factors, and 4-year mortality in a Latin American population: the REACH Registry. Clinical cardiology. 2012;35(8):451-7.

82. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet. 2013;381(9864):394-9.

83. Lipworth L, Fazio S, Kabagambe EK, Munro HM, Nwazue VC, Tarone RE, et al. A prospective study of statin use and mortality among 67,385 blacks and whites in the Southeastern United States. Clinical epidemiology. 2013;6:15-25.

84. Danaei G, Tavakkoli M, Hernan MA. Bias in observational studies of prevalent users: lessons for comparative effectiveness research from a meta-analysis of statins. American journal of epidemiology. 2012;175(4):250-62.

85. Bulbulia R, Bowman L, Wallendszus K, Parish S, Armitage J, Peto R, et al. Effects on 11-year mortality and morbidity of lowering LDL cholesterol with simvastatin for about 5 years in 20,536 high-risk individuals: a randomised controlled trial. Lancet. 2011;378(9808):2013-20.

86. Lloyd SM, Stott DJ, de Craen AJ, Kearney PM, Sattar N, Perry I, et al. Long-term effects of statin treatment in elderly people: extended follow-up of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). PloS one. 2013;8(9):e72642.

87. Margolis KL, Davis BR, Baimbridge C, Ciocon JO, Cuyjet AB, Dart RA, et al. Long-term followup of moderately hypercholesterolemic hypertensive patients following randomization to pravastatin vs usual care: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). Journal of clinical hypertension (Greenwich, Conn). 2013;15(8):542-54.

88. Sever PS, Chang CL, Gupta AK, Whitehouse A, Poulter NR. The Anglo-Scandinavian Cardiac Outcomes Trial: 11-year mortality follow-up of the lipid-lowering arm in the U.K. European heart journal. 2011;32(20):2525-32.

89. Mills EJ, O'Regan C, Eyawo O, Wu P, Mills F, Berwanger O, et al. Intensive statin therapy compared with moderate dosing for prevention of cardiovascular events: a meta-analysis of >40 000 patients. European heart journal. 2011;32(11):1409-15.

90. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA : the journal of the American Medical Association. 2004;291(9):1071-80.

91. Stone PH, Lloyd-Jones DM, Kinlay S, Frei B, Carlson W, Rubenstein J, et al. Effect of intensive lipid lowering, with or without antioxidant vitamins, compared with moderate lipid lowering on myocardial ischemia in patients with stable coronary artery disease: the Vascular Basis for the Treatment of Myocardial Ischemia Study. Circulation. 2005;111(14):1747-55.

92. Deedwania P, Stone PH, Bairey Merz CN, Cosin-Aguilar J, Koylan N, Luo D, et al. Effects of intensive versus moderate lipid-lowering therapy on myocardial ischemia in older patients with

coronary heart disease: results of the Study Assessing Goals in the Elderly (SAGE). Circulation. 2007;115(6):700-7.

93. Yu CM, Zhang Q, Lam L, Lin H, Kong SL, Chan W, et al. Comparison of intensive and low-dose atorvastatin therapy in the reduction of carotid intimal-medial thickness in patients with coronary heart disease. Heart (British Cardiac Society). 2007;93(8):933-9.

94. Colivicchi F, Tubaro M, Mocini D, Genovesi Ebert A, Strano S, Melina G, et al. Full-dose atorvastatin versus conventional medical therapy after non-ST-elevation acute myocardial infarction in patients with advanced non-revascularisable coronary artery disease. Current medical research and opinion. 2010;26(6):1277-84.

95. Jun M, Foote C, Lv J, Neal B, Patel A, Nicholls SJ, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010;375(9729):1875-84.

96. Group of physicians of the Newcastle upon Tyne region. Trial of clofibrate in the treatment of ischaemic heart disease. Five-year study by a group of physicians of the Newcastle upon Tyne region. British medical journal. 1971;4(5790):767-75.

97. Research committee of Scottish society of physicians. Ischaemic heart disease: a secondary prevention trial using clofibrate. Report by a research committee of the Scottish Society of Physicians. British medical journal. 1971;4(5790):775-84.

98. Veterans Administration Cooperative Study Group. The treatment of cerebrovascular disease with clofibrate. Final report of the Veterans Administration Cooperative Study of Atherosclerosis, Neurology Section. Stroke; a journal of cerebral circulation. 1973;4(4):684-93.

99. Coronary Drug Project Research Group. Clofibrate and Niacin in Coronary Heart Disease.1975.

100. WHO-COOP committee of principal investigators. A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the Committee of Principal Investigators. British heart journal. 1978;40(10):1069-118.

101. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. The New England journal of medicine. 1987;317(20):1237-45.

102. Hanefeld M, Fischer S, Schmechel H, Rothe G, Schulze J, Dude H, et al. Diabetes Intervention Study. Multi-intervention trial in newly diagnosed NIDDM. Diabetes care. 1991;14(4):308-17.

103. Nilsson J, Ericsson C, Hamsten A. Bezafibrate following acute myocardial infarction: important

findings from the Bezafibrate Coronary Atherosclerosis

Intervention Trial. Fibrinolysis Proteolysis 1997; suppl 1:159-62.

104. Frick MH, Syvanne M, Nieminen MS, Kauma H, Majahalme S, Virtanen V, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation. 1997;96(7):2137-43.

105. Elkeles RS, Diamond JR, Poulter C, Dhanjil S, Nicolaides AN, Mahmood S, et al. Cardiovascular outcomes in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St. Mary's, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes care. 1998;21(4):641-8.

106. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. The New England journal of medicine. 1999;341(6):410-8.

107. The BIP Study Group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation. 2000;102(1):21-7.

108. Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357(9260):905-10.

109. Meade T, Zuhrie R, Cook C, Cooper J. Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. Bmj. 2002;325(7373):1139.

110. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849-61.

111. Emmerich KH, Poritis N, Stelmane I, Klindzane M, Erbler H, Goldsteine J, et al. [Efficacy and safety of etofibrate in patients with non-proliferative diabetic retinopathy]. Klinische Monatsblatter fur Augenheilkunde. 2009;226(7):561-7.

112. Ginsberg HN, Elam MB, Lovato LC, Crouse JR, 3rd, Leiter LA, Linz P, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. The New England journal of medicine. 2010;362(17):1563-74.

113. Patel AY, Pillarisetti J, Marr J, Vacek JL. Ezetimibe in combination with a statin does not reduce all-cause mortality. Journal of clinical medicine research. 2013;5(4):275-80.

114. Naci H, Brugts J, Ades T. Comparative tolerability and harms of individual statins: a studylevel network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circulation Cardiovascular quality and outcomes. 2013;6(4):390-9.

115. Kleemann A, Eckert S, von Eckardstein A, Lepper W, Schernikau U, Gleichmann U, et al. Effects of lovastatin on progression of non-dilated and dilated coronary segments and on restenosis in patients after PTCA. The cholesterol lowering atherosclerosis PTCA trial (CLAPT). European heart journal. 1999;20(19):1393-406.

116. Athyros VG, Papageorgiou AA, Mercouris BR, Athyrou VV, Symeonidis AN, Basayannis EO, et al. Treatment with atorvastatin to the National Cholesterol Educational Program goal versus 'usual' care in secondary coronary heart disease prevention. The GREek Atorvastatin and Coronary-heart-disease Evaluation (GREACE) study. Current medical research and opinion. 2002;18(4):220-8.

117. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA : the journal of the American Medical Association. 2001;285(13):1711-8.

118. Hackam DG, Woodward M, Newby LK, Bhatt DL, Shao M, Smith EE, et al. Statins and intracerebral hemorrhage: collaborative systematic review and meta-analysis. Circulation. 2011;124(20):2233-42.

119. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735-42.

120. Wang KL, Liu CJ, Chao TF, Huang CM, Wu CH, Chen SJ, et al. Statins, risk of diabetes, and implications on outcomes in the general population. Journal of the American College of Cardiology. 2012;60(14):1231-8.

121. Zaharan NL, Williams D, Bennett K. Statins and risk of treated incident diabetes in a primary care population. British journal of clinical pharmacology. 2012;75(4):1118-24.

122. Preiss D, Seshasai SR, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA : the journal of the American Medical Association. 2011;305(24):2556-64.

123. Ko DT, Wijeysundera HC, Jackevicius CA, Yousef A, Wang J, Tu JV. Diabetes mellitus and cardiovascular events in older patients with myocardial infarction prescribed intensive-dose and moderate-dose statins. Circulation Cardiovascular quality and outcomes. 2013;6(3):315-22.

124. Carter AA, Gomes T, Camacho X, Juurlink DN, Shah BR, Mamdani MM. Risk of incident diabetes among patients treated with statins: population based study. Bmj. 2013;346:f2610.

125. Danaei G, Garcia Rodriguez LA, Fernandez Cantero O, Hernan MA. Statins and risk of diabetes: an analysis of electronic medical records to evaluate possible bias due to differential survival. Diabetes care. 2013;36(5):1236-40.

126. Nichols GA, Koro CE. Does statin therapy initiation increase the risk for myopathy? An observational study of 32,225 diabetic and nondiabetic patients. Clinical therapeutics. 2007;29(8):1761-70.

127. Hippisley-Cox J, Coupland C. Unintended effects of statins in men and women in England and Wales: population based cohort study using the QResearch database. Bmj. 2010;340:c2197.

128. Mansi IA, Mortensen EM, Pugh MJ, Wegner M, Frei CR. Incidence of musculoskeletal and neoplastic diseases in patients on statin therapy: results of a retrospective cohort analysis. The American journal of the medical sciences. 2013;345(5):343-8.

129. Richardson K, Schoen M, French B, Umscheid CA, Mitchell MD, Arnold SE, et al. Statins and cognitive function: a systematic review. Annals of internal medicine. 2013;159(10):688-97.

130. Steenland K, Zhao L, Goldstein FC, Levey AI. Statins and cognitive decline in older adults with normal cognition or mild cognitive impairment. Journal of the American Geriatrics Society. 2013;61(9):1449-55.

131. Leuschen J, Mortensen EM, Frei CR, Mansi EA, Panday V, Mansi I. Association of statin use with cataracts: a propensity score-matched analysis. JAMA ophthalmology. 2013;131(11):1427-34.
132. Klein BE, Klein R, Lee KE, Grady LM. Statin use and incident nuclear cataract. JAMA : the journal of the American Medical Association. 2006;295(23):2752-8.

Tan JS, Mitchell P, Rochtchina E, Wang JJ. Statin use and the long-term risk of incident cataract: the Blue Mountains Eye Study. American journal of ophthalmology. 2007;143(4):687-9.
Kostis JB, Dobrzynski JM. Prevention of Cataracts by Statins: A Meta-Analysis. Journal of cardiovascular pharmacology and therapeutics. 2013.

135. Zhang XL, Geng J, Zhang XP, Peng B, Che JP, Yan Y, et al. Statin use and risk of bladder cancer: a meta-analysis. Cancer causes & control : CCC. 2013;24(4):769-76.

136. Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast cancer research and treatment. 2012;135(1):261-9.

137. Liu Y, Tang W, Wang J, Xie L, Li T, He Y, et al. Association between statin use and colorectal cancer risk: a meta-analysis of 42 studies. Cancer causes & control : CCC. 2013.

138. Singh PP, Singh S. Statins are associated with reduced risk of gastric cancer: a systematic review and meta-analysis. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2013;24(7):1721-30.

139. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology. 2013;144(2):323-32.

140. Deng Z, Zhang S, Yi L, Chen S. Can statins reduce risk of lung cancer, especially among elderly people? A meta-analysis. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu. 2013;25(6):679-88.

141. Singh S, Singh AG, Singh PP, Murad MH, Iyer PG. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett's esophagus: a systematic review and metaanalysis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2013;11(6):620-9.

142. Cui X, Xie Y, Chen M, Li J, Liao X, Shen J, et al. Statin use and risk of pancreatic cancer: a metaanalysis. Cancer causes & control : CCC. 2012;23(7):1099-111.

143. Bansal D, Undela K, D'Cruz S, Schifano F. Statin use and risk of prostate cancer: a metaanalysis of observational studies. PloS one. 2012;7(10):e46691.

144. Chan JM, Litwack-Harrison S, Bauer SR, Daniels NA, Wilt TJ, Shannon J, et al. Statin use and risk of prostate cancer in the prospective Osteoporotic Fractures in Men (MrOS) Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2012;21(10):1886-8.

145. Zhang XL, Liu M, Qian J, Zheng JH, Zhang XP, Guo CC, et al. Statin use and risk of kidney cancer: a meta-analysis of observational studies and randomized trials. British journal of clinical pharmacology. 2013.

146. Li X, Wu XB, Chen Q. Statin use is not associated with reduced risk of skin cancer: a metaanalysis. British journal of cancer. 2013.

147. Sahi H, Koljonen V, Bohling T, Neuvonen PJ, Vainio H, Lamminpaa A, et al. Increased incidence of Merkel cell carcinoma among younger statin users. Cancer epidemiology. 2012;36(5):421-4.

148. Bonovas S, Filioussi K, Tsantes A, Sitaras NM. Use of statins and risk of haematological malignancies: a meta-analysis of six randomized clinical trials and eight observational studies. British journal of clinical pharmacology. 2007;64(3):255-62.

149. Jacobs EJ, Newton CC, Thun MJ, Gapstur SM. Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort. Cancer research. 2011;71(5):1763-71.

150. Wu XD, Zeng K, Xue FQ, Chen JH, Chen YQ. Statins are associated with reduced risk of gastric cancer: a meta-analysis. European journal of clinical pharmacology. 2013;69(10):1855-60.

151. Emberson JR, Kearney PM, Blackwell L, Newman C, Reith C, Bhala N, et al. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PloS one. 2012;7(1):e29849.

152. Marelli C, Gunnarsson C, Ross S, Haas S, Stroup DF, Cload P, et al. Statins and risk of cancer: a retrospective cohort analysis of 45,857 matched pairs from an electronic medical records database of 11 million adult Americans. Journal of the American College of Cardiology. 2011;58(5):530-7.

153. Enger C, Gately R, Ming EE, Niemcryk SJ, Williams L, McAfee AT. Pharmacoepidemiology safety study of fibrate and statin concomitant therapy. The American journal of cardiology. 2010;106(11):1594-601.

154. Bonovas S, Nikolopoulos GK, Bagos PG. Use of fibrates and cancer risk: a systematic review and meta-analysis of 17 long-term randomized placebo-controlled trials. PloS one. 2012;7(9):e45259. 155. Ballantyne CM, Lipka LJ, Sager PT, Strony J, Alizadeh J, Suresh R, et al. Long-term safety and tolerability profile of ezetimibe and atorvastatin coadministration therapy in patients with primary hypercholesterolaemia. International journal of clinical practice. 2004;58(7):653-8.